Subsurface Investigation

Solar Farm Information and Welcome Center

Haywood County, Tennessee

February 8, 2011 Prepared For:

Prepared By:

Florence & Hutcheson

E e

CONSULTING ENGINEERS

flohut.com

February 8, 2011

Mr. Alan Durham Tennessee Department of Transportation Maintenance Division James K. Polk Building, Suite 400 Nashville, TN 37243

RE: Subsurface Investigation for Solar Farm Information and Welcome Center Haywood County, TN

Dear Mr. Durham:

We have completed the subsurface investigation and geotechnical report for the referenced project.

Please call at your convenience if you have questions or comments. Florence & Hutcheson appreciates the opportunity to provide engineering and geologic services to the Tennessee Department of Transportation.

Sincerely,

FLORENCE & HUTCHESON, INC.

Devin L. Chittenden, P.E. Geotechnical Engineer

Kevin E. Walker, P.E., AL. Geotechnical Designer

Subsurface Investigation

Table of Contents

Executive Sun	nmary 0				
Introduction 1					
Geology, Soils	eology, Soils, and Site Conditions 1				
Surface and S	urface and Subsurface Exploration 4				
Seismic Consid	derations				
Recommendat	tions and Discussion				
Appendix I	Nominal Resistance Versus Depth Charts for Driven Piles				
Appendix II	Nominal & Factored Resistances Versus Depth Charts for Drilled Shafts				
Appendix III	Pavement Design Calculations				
Appendix IV	Boring Logs				
Appendix V	Laboratory Results				
Appendix VI	Plan, Profile and Cross Section Sheets				
Appendix VII	Foundation Data Sheets (Bridge and Welcome Center)				

Solar Farm Information & Welcome Center P.E. No. 38001-1684-04 PIN No. 113823.00 Haywood County

Executive Summary

This report summarizes the results of a subsurface investigation for the proposed Solar Farm Information and Welcome Center, parking lots, approach ramps and bridge on I-40 between existing exit 42 and existing exit 47 in Haywood County. In general, the proposed project may be constructed using 2H:1V or flatter cut slopes and 4H:1V or flatter embankment slopes under static loading conditions.

All of the critical areas along the project alignment were also analyzed for pseudostatic seismic slope stability with a minimum required safety factor of 1.1. Based on this seismic slope analysis, the embankment and abutment slopes for the bridge have acceptable factors of safety, whereas some of the cut slopes along the alignment do not meet the minimum factor of safety requirements. Mitigation measures (flattening slopes, ground modification, etc.) could be utilized to reduce or eliminate the potential effects of seismic events on this project. However, these mitigation measures will increase the project construction cost.

The proposed bridge is a two span arrangement and will be located on new alignment with new approach ramps. Bedrock was not encountered during the investigation, however very dense sand and/or refusal were encountered within a few SPT sample intervals suggesting localized cementation of the Claiborne Formation sediments. It is recommended that the abutments of the proposed bridge be supported on driven piles and the interior bents be supported on either driven piles or drilled shafts.

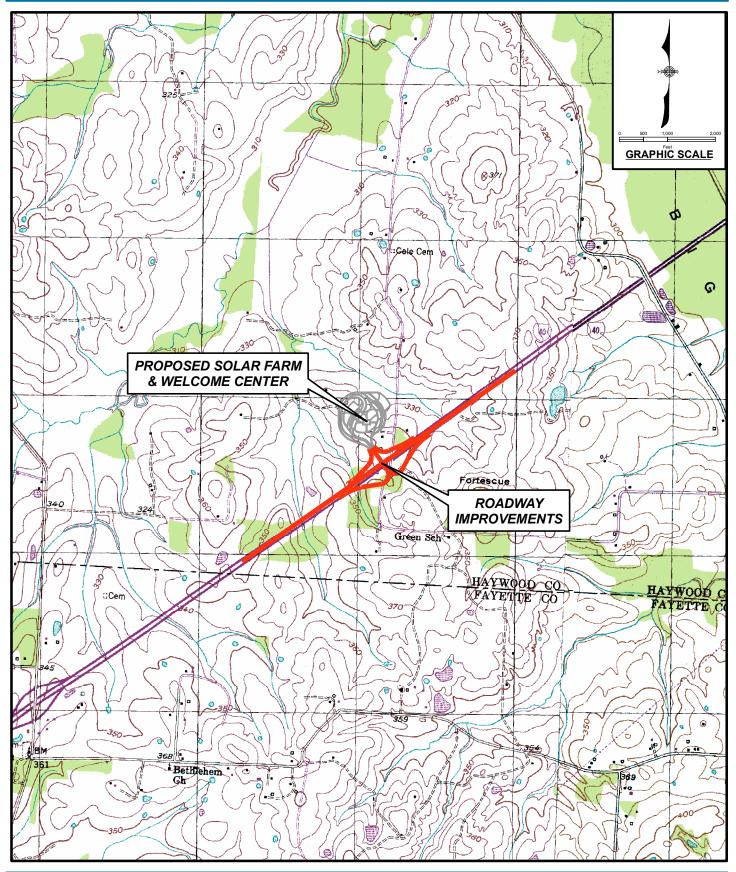
Florence & Hutcheson

Solar Farm Information & Welcome Center P.E. No. 38001-1684-04 PIN No. 113823.00 Haywood County

Introduction

This report defines subsurface conditions and provides geotechnical conclusions and recommendations for the design and construction of the proposed Solar Farm Information and Welcome Center to be located along Interstate 40, approximately 1.6 miles east of the Stanton Road interchange. The proposed interchange will be constructed in two (2) phases; Phase I will construct the westbound exit and entrance ramps and Phase II will construct a 2-span bridge over I-40 and the eastbound exit and entrance ramps. A site vicinity map, Page No. 2, indicates the location of the site.

Borings were advanced and soil samples were collected and delivered to the Florence & Hutcheson laboratory for further testing and analysis. Geotechnical parameters are provided in this report resulting from the evaluations of soil conditions beneath the proposed welcome center, beneath the proposed parking areas, along the proposed bridge alignment and along the proposed ramp alignments.


Geology, Soils, and Site Conditions

The proposed alignments and sites are located upon gently rolling to flat terrain of the West Tennessee Coastal Plain Physiographic Province as defined in Tennessee. Surface features of portions of the site have been altered by construction of I-40. The West Tennessee Coastal Plain, in the immediate area, is underlain by Quaternary Loess and Eocene age Claiborne Formation.

Florence & Hutcheson

Subsurface Investigation

Florence & Hutcheson Consulting Engineers

SOLAR FARM & WELCOME CENTER STANTON QUADRANGLE

STANTON QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC) TENNESSEE - HAYWOOD COUNTY The loess is dominantly composed of silt and clay while the Claiborne Formation is principally composed of sand with beds of silt and clay. The proximity of the site to the New Madrid Seismic Zone requires consideration of potential seismic risk for roadways and structures constructed at the proposed site.

Boreholes advanced during drilling operations produced soil samples for laboratory testing. Laboratory analysis of soil samples recovered from standard penetration testing, Shelby tube sampling and bulk sampling revealed low to medium plasticity clay and silt with varying fractions of fine grain sand, fine grain sand with sufficient clay and silt to exhibit low plasticity characteristics and non-plastic fine grain to medium grain sand with traces of silt and clay. Low plasticity silt and clay with some traces of fine grain sand composed loess deposits ranging from 4.2 feet to 15.0 feet in thickness but were absent within borings B-18, B-26, B-30 and B-31. Claiborne sediments were composed of bedded, low to medium plasticity clay and silt and low plasticity fine grain sand, silt and clay immediately underlying the loess then grading to massive, low plasticity to non-plastic fine grain to medium grain sand with depth.

The deepest borings, located at the bridge site, were advanced to maximum depths of 101.0 feet without completely penetrating the Claiborne. Fill material, encountered within borings B-12, B-19, B-20 and B-49, was composed of low plasticity silt and clay with traces of fine grain sand and ranged in thickness from 3.0 feet to 9.0 feet. Underlying rock was not encountered within any boring advanced however dense sand and/or SPT refusal was encountered within a few sample intervals suggesting localized cementation within the Claiborne sediments. This cementation is anticipated to be relatively thin vertically and not laterally extensive at any one particular elevation.

Florence & Hutcheson

Faulting is not indicated on published mapping nor did examination of the recovered samples suggest the presence of faulting. The immediate project area is located near the New Madrid Seismic Region.

Surface and Subsurface Exploration

Drilling and sampling activities were performed in October and November 2010. Borings were advanced by CME 45-C track-mounted and CME 45-B trailer mounted drill rigs utilizing standard geotechnical procedures. Thirty-Six (36) borings were advanced along the proposed ramp alignments, six (6) borings were advanced at bridge bent locations, eight (8) borings were advanced along the welcome center building perimeter and fourteen (14) borings were advanced within the proposed parking lot limits. Auger refusal was not encountered in any of the borings, however some very dense sand layers and scattered instances of SPT refusal were encountered. All soil specimens were transported to the laboratory of Florence & Hutcheson for examination. Soil samples were subjected to laboratory analysis, including the following tests:

Atterberg Limits	AASHTO T-89 and T-90
Sieve Analysis	AASHTO T-27 and ASTM D-1140
Natural Moisture Content	AASHTO T-265
 Moisture - Density Relationship 	AASHTO T-99
California Bearing Ratio	AASHTO T-193
 Unconfined Compression 	AASHTO T-208
 Unconsolidated Undrained Triaxial 	AASHTO T-296
 Consolidated Undrained Triaxial 	AASHTO T-297
Consolidation	AASHTO T-216

Recovered soil samples were composed of lean clay (A-6), sandy lean clay (A-6), lean clay with sand (A-7-6), silty clay (A-4), clayey to silty sand and poorly graded to well graded sand (A-2-4), poorly graded sand, (A-1-b), silty sand (A-4) and sandy, silty clay (A-4).

Groundwater elevations recorded from borings and inferred from drillers descriptions and natural moisture contents suggest a varied level ranging from 20.0 feet to 45.0 feet below existing ground level with corresponding elevation range of 327' to 297'. Due to the fine grain and cohesive characteristics of surface soils saturation during seasonal rainfall events may lead to perched water tables and/or surface pooling. Any excavation below the natural ground surface could encounter seepage water as a result.

Seismic Considerations

According to the U.S. Geological Survey ground motion contour maps, the peak ground acceleration having a 7% probability of exceedance in 75 years at the project site is equal to A=0.417g for an earthquake of moment magnitude equal to 7.7. The effect of seismic loading at the project site can then be investigated in terms of liquefaction potential of the native soil deposits. Based on the data obtained from the standard penetration tests conducted, a Soil Class D is recommended.

In general, the liquefaction potential of a soil is a function of two factors: the magnitude and duration of the strong ground motion and the susceptibility of the soil to liquefaction as expressed by the existing soil conditions. A suitable combination of in-situ conditions and earthquake-induced motion will result in the development of soil liquefaction. However, in order to be susceptible to liquefaction, potentially liquefiable soils must be saturated or nearly saturated. Based on these criteria, soil characteristics, and our knowledge of subsurface conditions within the project site, the potential for liquefaction for the analyzed event is low.

Recommendations and Discussion

Proposed Roadways Ramps and Acceleration/Deceleration Lanes

Static slope stability analysis was performed for the critical cut sections and embankment sections throughout the limits of the proposed alignments. A minimum safety factor of 1.3 was utilized to determine the final design slopes. The soil strength parameters were selected based on the results of the standard penetration testing (SPT), soil classification, unconfined compression testing, unconsolidated undrained triaxial testing, consolidated undrained triaxial testing and engineering judgment. Each critical design section is included within the soil sheets located in Appendix VI. A table summarizing the results of the static slope stability analysis is provided below:

Station	Туре	Short Term Safety Factor	Long Term Safety Factor
Ramp A 22+00	FILL	4.0	4.0
Ramp B 34+00	CUT	2.6	1.6
Ramp C 41+50	CUT	2.2	1.7
Ramp C 52+00	FILL	2.4	2.7
Ramp D 61+50	FILL	3.2	2.8

In addition, pseudo-static seismic slope stability analysis with a minimum safety factor of 1.1 was performed on critical areas along the project alignment. A table summarizing the results of the seismic slope stability analysis follows. Based on this analysis, the embankment slopes on this project have acceptable factors of safety for seismic slope stability. However, based on the analysis, some of the cut slopes on this project do not meet the minimum factor of safety for seismic slope stability.

Station	Туре	Safety Factor
Ramp A 22+00	FILL	1.4
Ramp B 34+00	CUT	0.8
Ramp C 41+50	CUT	0.7
Ramp C 52+00	FILL	1.1
Ramp D 61+50	FILL	1.1

The following is a summary of the recommendations for the proposed roadway ramps:

Ramp A - Station 20+00 to Station 29+32.89

This section of roadway consists of embankments that extend to heights of 21 feet and cuts that extend to depths of 13 feet. One (1) design cross section within the embankment was analyzed at Station 22+00. Borings advanced within this interval encountered lean clays and sandy lean clays. These materials produced "N" values ranging from 9 to 12 BPF with an average value of 13 BPF. Auger refusal was not encountered. The maximum depth of the advanced borings was 42 feet. We recommend embankment and cut slopes of 4H:1V or flatter for this interval. In addition, embankment benching is recommended within this interval from Station 23+50 to Station 27+50 where the proposed embankments tie into the existing I-40 embankment. The short term and long term factors of safety for the design section at Station 22+00 were 4.0 and 4.0, respectively.

Ramp B - Station 30+00 to Station 39+32.89

This section of roadway consists of embankments that extend to heights of 14 feet and cuts that extend to depths of 22 feet. One (1) design cross section within the cut was analyzed at Station 34+00. Borings advanced within this interval encountered lean clays, lean clays with sand, and sandy lean clays. These materials produced "N" values ranging from 13 to 23 BPF with an average value of 19 BPF. The maximum depth penetrated was 36.5 feet.

Florence & Hutcheson

Auger refusal was not encountered within this interval. We recommend cut slopes of 2H:1V or flatter and embankment slopes of 4H:1V or flatter for this interval. The short term and long term factors of safety for the design section at Station 34+00 were 2.6 and 1.6, respectively.

Ramp C - Station 40+00 to Station 44+00

This section of roadway consists of cuts that extend to depths of 15 feet. One (1) design cross section was analyzed at Station 41+50. Borings advanced within this interval encountered lean clays, sandy lean clays, lean clays with sand, silty sand, and poorly graded sand with silt. These materials produced "N" values ranging from 20 to 26 BPF. Auger refusal was not encountered. The maximum depth of the advanced borings was 26.0 feet. We recommend cut slopes of 3H:1V or flatter for this interval. The short term and long term factors of safety for the design section at Station 41+50 were 2.2 and 1.7, respectively.

Ramp C - Station 44+00 to Station 53+11.07

This section of roadway consists of embankments that extend to heights of 26 feet. One (1) design cross section was analyzed at Station 52+00. Borings advanced within this interval encountered lean clays, sandy lean clays, and silty sand. These materials produced "N" values ranging from 6 to 25 BPF. Auger refusal was not encountered. The maximum depth of the advanced borings was 51.5 feet. We recommend embankment slopes of 3H:1V or flatter for this interval. In addition, we recommend that 3 feet of undercut and replacement with select granular material is required from Station 49+00 to Station 53+00. The short term and long term factors of safety for the design section at Station 52+00 were 2.4 and 2.7, respectively.

Florence & Hutcheson

Ramp D - Station 60+00 to Station 73+11.07

This section of roadway consists of embankments that extend to heights of 31 feet and cuts that extend to depths of 8 feet. One (1) design cross section within the embankment was analyzed at Station 61+50. Borings advanced within this interval encountered lean clays, lean clay with sand, sandy lean clays, and silty sand. These materials produced "N" values ranging from 12 to 49 BPF with an average value of 26 BPF. Auger refusal was not encountered. The maximum depth of the advanced borings was 35.5 feet. We recommend embankment slopes of 3H:1V or flatter and cut slopes of 4H:1V or flatter for this interval. The short term and long term factors of safety for the design section at Station 61+50 were 3.2 and 2.8, respectively.

I-40 Widening (Ramp A Acceleration Lane) Station 66+15.00 to Station 79+15.94

This section of roadway consists of widening existing I-40 embankments that extend to heights of 16 feet and cuts that extend to depths of 14 feet. Borings advanced within this interval encountered lean clays and slity sands. Auger refusal was not encountered. We recommend embankment slopes of 3H:1V or flatter and cut slopes of 4H:1V or flatter for this interval. However, 2H:1V ditch back slopes may be utilized from Station 71+00 to Station 74+00 where cut depths are 10 feet or less in order to minimize impact to a pond. In addition, embankment benching is also recommended within this interval from Station 66+50 to Station 74+50.

I-40 Widening (Ramp B Deceleration Lane) Station 95+94.05 to Station 103+44.00

This section of roadway consists of widening existing I-40 embankments that extend to heights of 7 feet and cuts that extend to depths of 10 feet. Borings advanced within this interval encountered lean clays. Auger refusal was not encountered. We recommend embankment and cut slopes of 4H:1V or flatter for this interval. In addition, embankment benching is recommended within this interval from Station 99+50 to Station 102+50.

I-40 Widening (Ramp C Deceleration Lane) Station 68+47.00 to Station 75+96.88

This section of roadway consists of widening the existing I-40 embankments that extend to heights of 10 feet and cuts that extend to depths of 9 feet. Borings advanced within this interval encountered lean clays. Auger refusal was not encountered. We recommend embankment and cut slopes of 4H:1V or flatter for this interval. In addition, embankment benching is recommended within this interval from Station 68+47 to Station 74+50.

I-40 Widening (Ramp D Acceleration Lane) Station 99+13.12 to Station 113+52.99

This section of roadway consists of widening the existing I-40 embankments that extend to heights of 8 feet. Borings advanced within this interval encountered lean clays. Auger refusal was not encountered. We recommend embankment slopes of 4H:1V or flatter for this interval. In addition, embankment benching is recommended within this interval from Station 99+13.12 to Station 110+00.

Proposed Eastbound Access Bridge

In the absence of foundation loading, we have provided an array of foundation recommendations for use in supporting the two-span Eastbound Access Road bridge over I-40. Deep foundations will likely be required to support the bridge loads at this site. We have prepared nominal resistance (ultimate capacity) versus depth charts for 12x53 and 14x73 steel H-piles and for 14" Square and 16" Square concrete piles for each of the abutments and the interior bent locations. These charts were developed based upon the latest design procedures from the TDOT Geotechnical Section for West Tennessee bridges with significant depth to bedrock. The actual factored resistance for the driven piles will be determined by the method of driving criteria selected as per Table 10.5.5.2.3-1 of the 2010 AASHTO LRFD Bridge Design Specifications. It is also worth noting that the steel pile resistance charts in Appendix I will be limited by the structural capacity of the piles.

The advance borings encountered intervals of hard clays and dense sands which could result in difficult driving of the both the concrete and steel H-piles. If steel H-piles are selected, we recommend pile points be utilized to protect the pile tips through these dense sand intervals. If concrete piles are selected, five to ten feet of pre-drilling may be required to penetrate the hard clays which are present near the surface. Also, pre-drilling will be required for the concrete pile tips below approximate elevation 310' on Abutment 1 and Bent 1 and approximate elevation 305' on Abutment 2. The Nominal Resistance Charts for both steel H-piles and concrete piles are presented in Appendix I.

In addition to driven pile foundations, drilled shafts may also be utilized to support the interior bridge bent. Nominal and factored resistance versus depth charts have been provided for 4 foot, 5 foot, and 6 foot diameter drilled shafts for the interior Bent 1 location.

Florence & Hutcheson

Applicable resistance factors for both side and tip resistance in the clay and sandy materials were applied based on 2010 AASHTO LRFD Bridge Design Specifications. The Nominal and Factored Resistance Charts are presented in Appendix II.

A static and seismic slope stability analysis was performed for the critical embankment section at Abutment 1. The section was taken perpendicular to the contours of the proposed abutment slope between the locations of Borings B-55 and B-56. A minimum safety factor of 1.3 was used to determine the final design slope for static conditions and a minimum safety factor of 1.1 was used for the seismic conditions. The short term and long term factors of safety for the critical design section were 2.0 and 2.3, respectively. The critical design section is included within the Foundation Data sheets in Appendix VII.

Subsurface conditions indicate the potential settlement for new embankment construction within the analyzed areas near the bridge abutments could range from approximately 2" to 6". Cohesive soils coupled with some amounts of sandy materials will allow the majority of the settlement to occur during a standard construction cycle. The estimated time for approximately 90% of the settlement to dissipate ranges from 30 to 60 days. However, the longer time frames are required for estimated settlements of an inch or less to dissipate. We further recommend that the larger proposed embankments on the project be constructed first so that there is not a potential time constraint during construction. If this cannot be accomplished or tolerated during construction, waiting periods along with settlement plates and monitoring may be required to allow the Engineer to determine when the primary settlement has dissipated. Additional fill materials are anticipated in some areas prior to paving operations due to the settlement that will occur after the initial embankment construction.

Florence & Hutcheson

The location of the proposed site suggests the potential for moderate ground shaking during a seismic event. However, due to the clay materials encountered in the upper 30 to 40 feet overlying medium to dense sands, the potential for liquefaction and subsequent slope instability and soil deformations at roadway embankments and the bridge abutments are estimated to be negligible. Calculations indicate seismic induced settlement at the bridge abutments will not be of sufficient magnitude to impose dragdown forces on bridge foundations. In our opinion the seismic risk associated with this project is tolerable. Although damage to the roadway and structures may occur, it is likely that they will remain serviceable after the analyzed seismic event.

Proposed Information and Welcome Center

At the writing of this report, specific details for foundation loadings and locations are not available. Preliminary information suggests no below grade construction or possible retaining structures may be required. We request the opportunity to review and possibly revise our recommendations once the final design has been completed.

We recommend allowable bearing capacities of 1600 PSF for continuous foundations and 2000 PSF for square column foundations having footing depths of 2 feet. For footing depths of 4 feet, we recommend allowable capacities of 1700 PSF for continuous foundations and 2200 PSF for square column foundations. At these footing pressures above, we are estimating total and differential settlement at 1" or less. If these bearing capacities are inadequate, undercutting with crushed stone or dense graded aggregate, or lowering the bottom of footing elevations will further increase the allowable capacities.

For slab design, a sub-grade modulus of 120 PCI is recommended. We further recommend the exposed material at grade be proof-rolled prior to placing concrete. Any unstable areas exposed during construction will require undercut and backfill with approved, compacted fill. A moisture barrier system is also recommended for all interior slabs on grade.

Based upon the soils encountered at this site, a design CBR value of 3 which equates to a resilient modulus of 4500 PSI will be utilized for the pavement designs at this welcome center. We understand that a pavement design is needed for the service road and heavy truck road / new proposed ramps which include the heavy trucks. Based on an estimated 20year design AADT of 2640, we have prepared the following pavement designs in accordance with the AASHTO Guide for the Design of Pavement Structures (1993). We have included the pavement design calculation in Appendix III.

> Service Road Only Alternate 1 1.25" Asphalt Concrete Surface Grading D 3.5" Asphalt Concrete Base 8" Crushed Stone Total Thickness = 12.75"

> Service Road Only Alternate 2 1.25" Asphalt Concrete Surface Grading D 2" Asphalt Concrete Binder 4" Asphalt Concrete Base Total Thickness = 7.25"

Heavy Truck Road Alternate 1 1.25" Asphalt Concrete Surface Grading D 2.0" Asphalt Concrete Binder 3.5" Asphalt Concrete Base (A Mix) 3.5" Asphalt Concrete Base (A-S Mix) 10" Crushed Stone Total Thickness = 20.25"

<u>Heavy Truck Road Alternate 2</u> 9" Portland Cement Concrete Pavement (JPCP) 8" Total Base (4" Treated Permeable Base + 4" Crushed Stone) Total Thickness = 17"

Florence & Hutcheson

Perched groundwater levels at the existing surface could occur if construction is staged during wet winter and spring months and/or following moderate to seasonal precipitation events. Groundwater seepage could occur during construction excavations and a temporary sump system may be required during construction to minimize the effects of seepage on excavation stability. The clayey and silty portions of the soils on site are susceptible to swelling and softening if exposed to excess moisture. Extra precaution should be taken to protect foundation materials. Final earth grading should be sloped away from the structures and backfilling of foundations should be compacted to the minimum requirements set forth in this report. Underground utility lines, landscaping and planting areas *must be designed and constructed* to prevent excess moisture from entering and collecting near foundations.

During construction, the excavation of foundation soils should not be left open to allow the accumulation of water. Once the foundation excavation begins, the backfill operation shall be completed as soon as possible. If this cannot be done, a 4" thick slab of lean concrete shall be placed to protect the foundation supporting soils. At no time shall backfill material be placed in excavations which contain water.

Natural moisture contents in the clayey and silty soils are near or above optimum levels. Earthmoving operations and soil compaction will likely require aeration of soils to reduce moisture contents. These activities are generally not practical in wet winter and early spring months for this geographic area. In addition, all foundation and sub-grade soils must be protected against unnecessary manipulation under construction equipment which could work them into an unstable condition.

Florence & Hutcheson

All foundation excavation should be inspected by a qualified soils engineer prior to placing concrete to verify design assumptions and to prevent seating foundations on unstable materials. Any unstable material encountered during construction should be undercut to stable soils and replaced with approved, compacted fill.

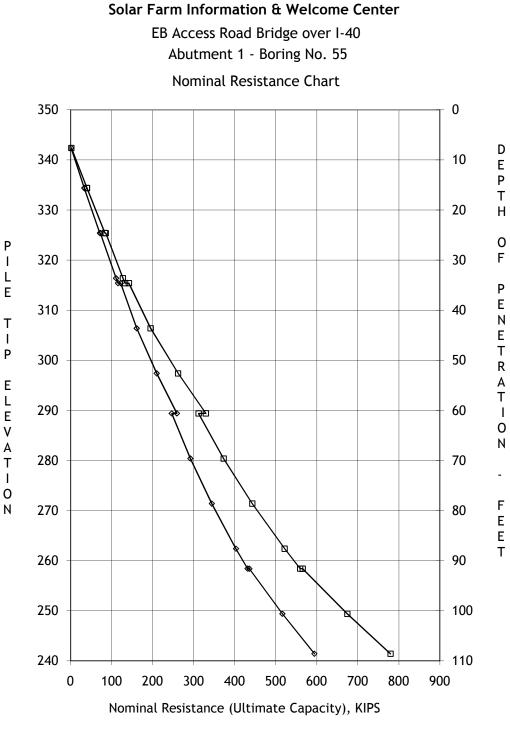
Compaction of backfill materials should achieve *95% of maximum dry density* at optimum moisture content ±2% in accordance with ASTM D 698 or AASHTO T 99, standard proctor. Compaction shall be verified with field density tests performed by qualified soils technicians.

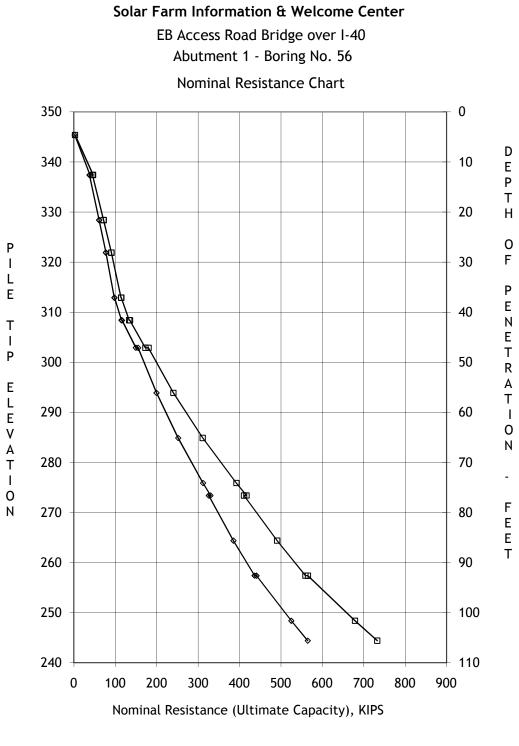
Special Notes and/or Specifications

- 1. The natural moisture contents of the overburden soils at the time of drilling are typically near or above the upper limit of the 95% compaction moisture range. Drying, handling, and manipulation of the soils is likely to be required in order to achieve the proper moisture content required to satisfy the compaction requirements.
- 2. Installation of erosion control matting and establishment of vegetation shall be conducted as soon as practical to prevent erosion of the reconfigured side-hill slope, bridge abutment slopes and construction staging areas.
- 3. 3 feet of undercut along with backfill consisting of Select Granular Material shall be placed beneath the embankment footprint from Station 49+00 to Station 53+00.
- 4. Compaction of backfill materials shall achieve 95% of maximum dry density at optimum moisture content ±2% in accordance with ASTM D 698 or AASHTO T 99, standard proctor. Compaction shall be verified with field density tests performed by qualified soil technicians.
- 5. The following station intervals shall require the use of embankment benching to construct the proposed embankments. Embankment benching shall be in accordance with Section 205 of the Standard Specifications for Road and Bridge Construction.

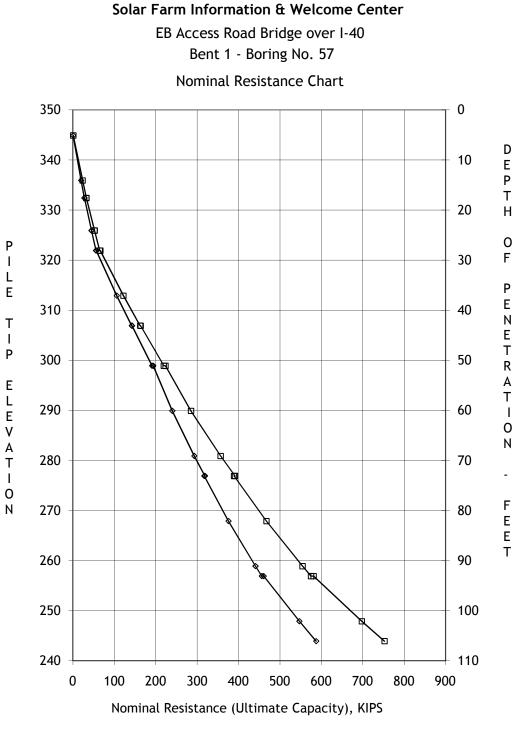
I-40 Widening (Ramp A Acceleration Lane) Station 66+50 to Station 74+50 I-40 Widening (Ramp B Deceleration Lane) Station 99+50 to Station 102+50 I-40 Widening (Ramp C Deceleration Lane) Station 68+47 to Station 74+50 I-40 Widening (Ramp D Acceleration Lane) Station 99+13.12 to Station 110+00

- 6. All drilled shafts to be constructed per the current version of TDOT Special Provisions 625 "Special Provision Regarding Drilled Shaft Specifications."
- 7. Embankment sections near the proposed abutments shall be constructed first, or as soon as practical in the construction sequence. A waiting period ranging from 30 to 60 days is required prior to paving operations and pile driving operations in these areas to reduce the effects of settlement on pavement and to reduce the likelihood of dragdown forces on the piles. The indicated waiting period and initial fill construction shall be utilized within the following approximate limits, at the direction of the Engineer.

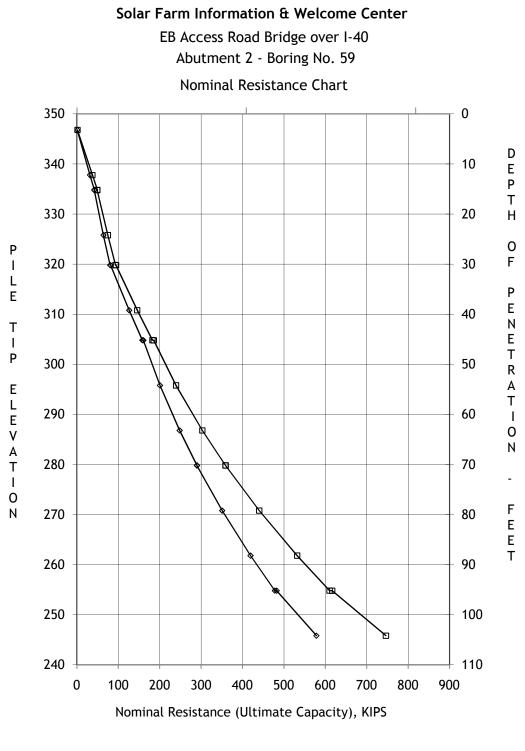

Ramp A Station 20+00.00 to Station 25+00.00 Ramp B Station 37+50.00 to Station 39+32.89 Ramp C Station 49+50.00 to Station 53+11.07 Ramp D Station 60+00.00 to Station 62+00.00 Access Road Station 8+27.62 to Begin Bridge Access Road from End Bridge to Station 13+50.00

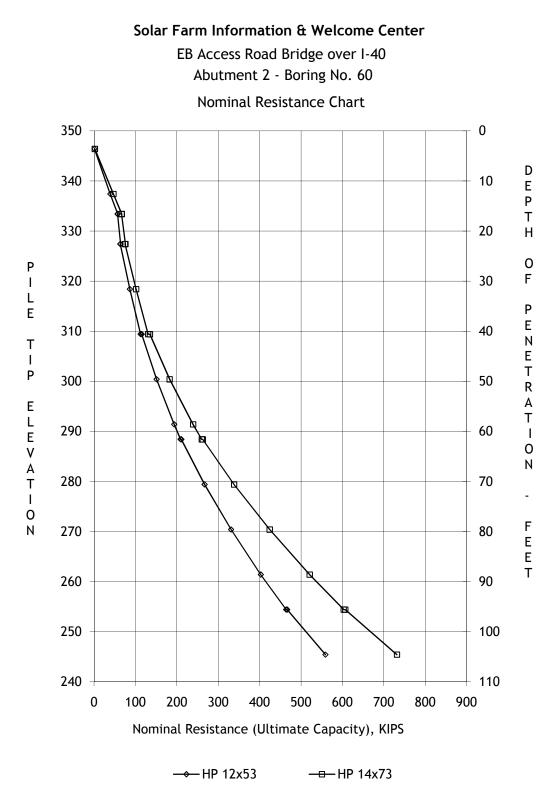

Florence & Hutcheson

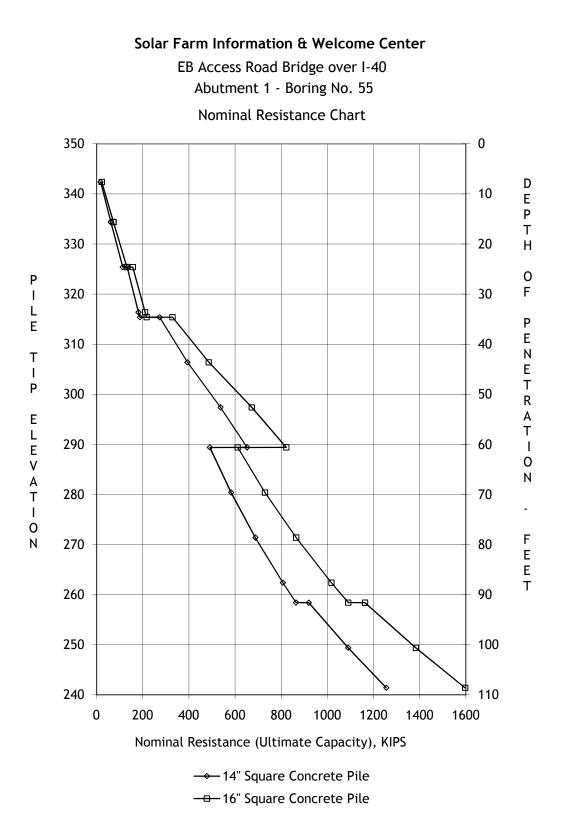
Appendix I Nominal Resistance Versus Depth Charts for Driven Piles

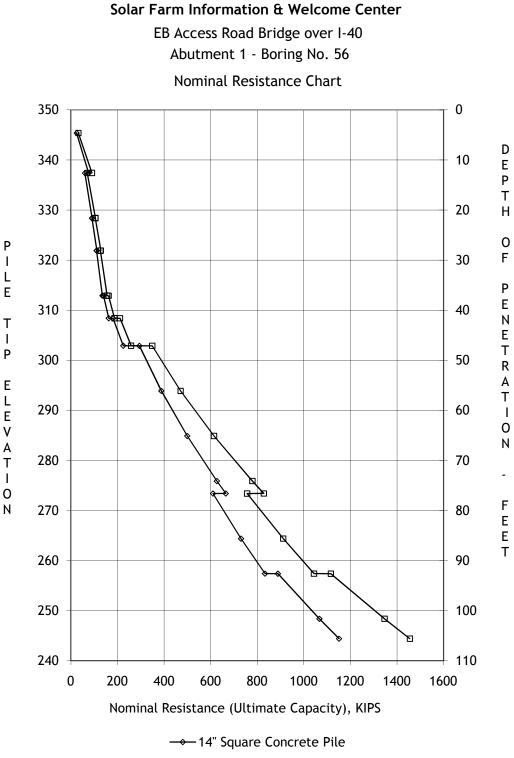


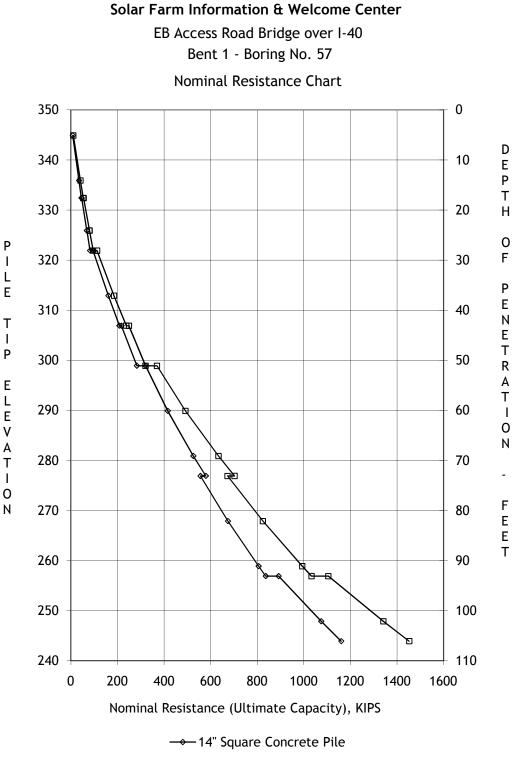


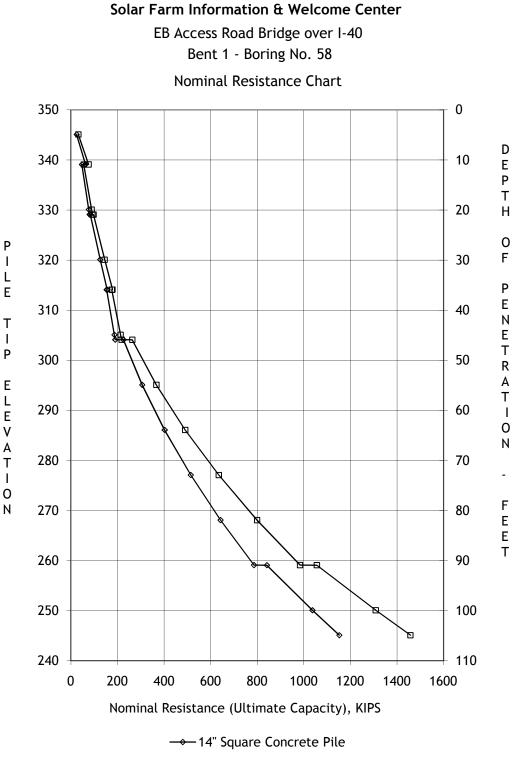

→ HP 12x53 —□—HP 14x73

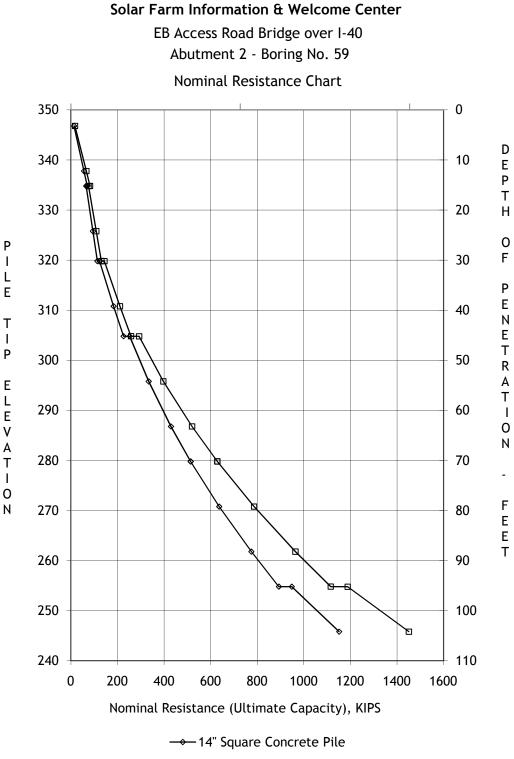

→ HP 12x53 —□—HP 14x73

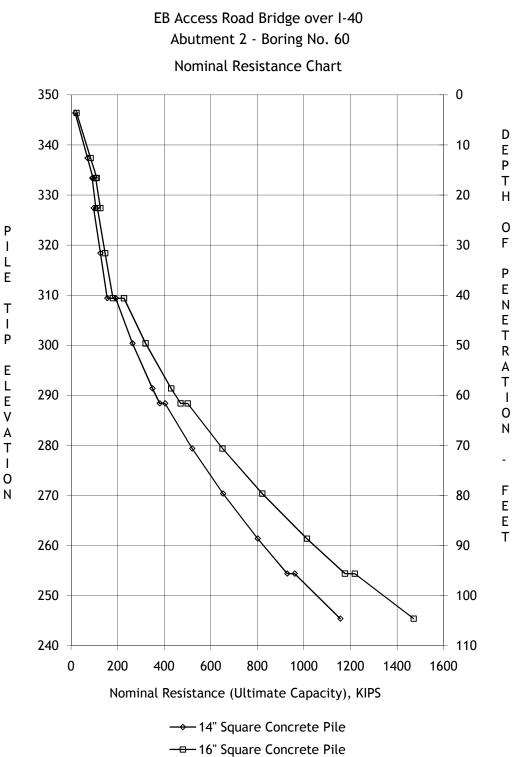


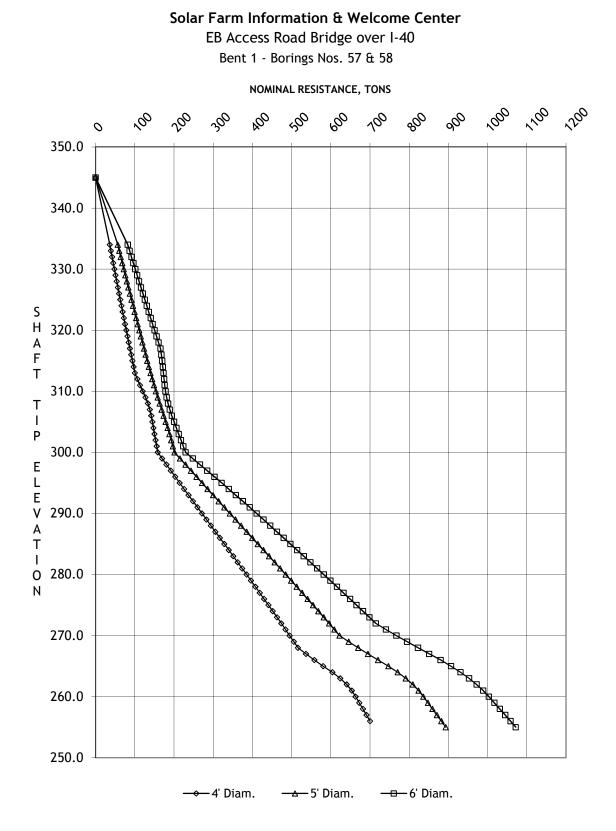


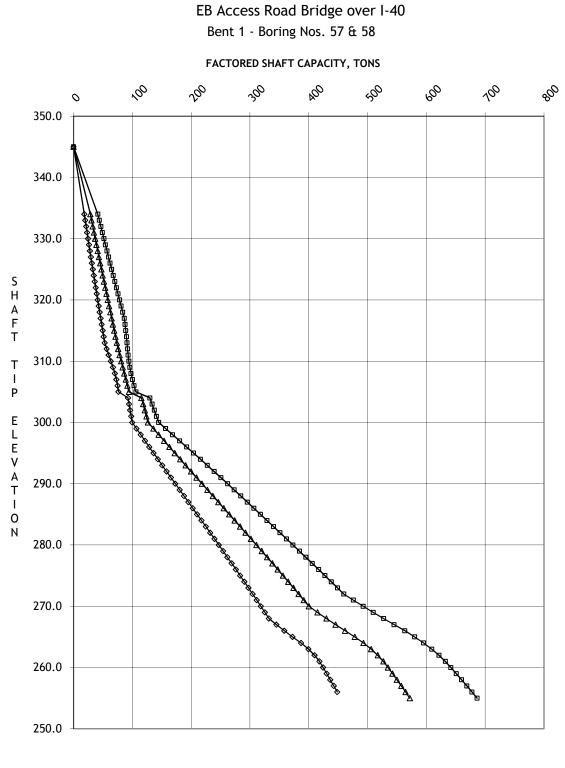












Solar Farm Information & Welcome Center

Appendix II Nominal & Factored Resistance Charts Versus Depth for Drilled Shafts

Solar Farm Information & Welcome Center

→ 4' Diam. → 5' Diam. → 6' Diam.

Appendix III Pavement Design Calculations

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Flexible Structural Design Module

TDOT Solar Farm and Welcome Center Haywood County Service Road Only (No Class 5 or greater trucks)

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	109,926
Initial Serviceability	4.5
Terminal Serviceability	2.5
Reliability Level	90 %
Overall Standard Deviation	0.45
Roadbed Soil Resilient Modulus	4,500 psi
Stage Construction	1
Calculated Design Structural Number	2.88 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	2,640
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	100 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	1 %
Average Initial Truck Factor (ESALs/truck)	0.57
Annual Truck Factor Growth Rate	0 %
Annual Truck Volume Growth Rate	0 %
Growth	Simple
Total Calculated Cumulative ESALs	109,926

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Flexible Structural Design Module

TDOT Solar Farm and Welcome Center Haywood County Heavy Truck Loading

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	5,237,667
Initial Serviceability	4.5
Terminal Serviceability	2.5
Reliability Level	90 %
Overall Standard Deviation	0.45
Roadbed Soil Resilient Modulus	4,500 psi
Stage Construction	1
Calculated Design Structural Number	5.11 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	2,640
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	100 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	33 %
Average Initial Truck Factor (ESALs/truck)	0.823
Annual Truck Factor Growth Rate	0 %
Annual Truck Volume Growth Rate	0 %
Growth	Simple
Total Calculated Cumulative ESALs	5,237,667

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Rigid Structural Design Module

TDOT Solar Farm and Welcome Center Haywood County Heavy Truck Loading Alternate

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	7,617,847
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	750 psi
28-day Mean Elastic Modulus of Slab	3,600,000 psi
Mean Effective k-value	232 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.35
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1
Calculated Design Thickness	8.59 in

Simple ESAL Calculation

Danforman as Danied (waana)	20
Performance Period (years)	20
Two-Way Traffic (ADT)	2,640
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	100 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	33 %
Average Initial Truck Factor (ESALs/truck)	1.197
Annual Truck Factor Growth Rate	0 %
Annual Truck Volume Growth Rate	0 %
Growth	Simple
Total Calculated Cumulative ESALs	7,617,847

(

(

ţ

Florence & Hutcheson

.....

Project TPOT Salar Farm & Welcone anter

CONSULTING ENGINEERS

Calc. By D_C ____ Date _____ Date _____

Checked By _____ Date _____

	6		<u>~9</u>	R	20	A	C r		Da	17	<u>م</u>			92-0	-\	4	CA	k			Pa	1		1								
- 9 -									ļ		RE			_						<u>"</u>]			1	<u>}.</u>								
											A						Si	art	bie	G	rød	ing	a						0.			
									8	5" "	ns Mir	ipha eire	tte L	nga	y. P	ବୟ	z _(<u>ار د</u>	į								11	1.4 1.1	2		
				09703075325		1 17 - Addie Art					dl an e versionerse				3.0	2>	2.8	38	or	V							antanati + 11 + 1	9	3,0)S	0	ĸ
2)	11 e	2011	4_	T'n	ect	¢		ad.	,~0	ام	Ro	m	<u>os</u>	T G	e/ pr		<u> </u>	10	(1)z	ohe	<u>ب</u> لر)						· · · · ·		· · · · · ·	· · · · ·
											SN										**************************************					1						
			Pv	nt	D	105	igr			1	25"	A As	sph	ho ht	Ht.	Cor Binn	cre fr	le A M	Su	r-60	¢	61	roď	ng	þ		2(0.4	0)	:	0,5 0.80 1,40	ว_
		1 Mark da Ver	-1/(2010)00-04-0			,-				3'6	34	As M:	phe	11	B	XSC	(1 Ro	7-5 50	mi	x)							3.5	Q.	s0)	ŝ	1.05 1.41	
									-	_1						JJ.	p											الم		1	5,15	-
								-					5,	15	ÞĘ	. 11	C	ĸ	\checkmark													
3) 1	Heo	NV4		ru	k	lo	oq.	ing	6	Rq.	mp	5	ЪH	evn	ote	>	[0]	Gro	n	(-)	10	(Ċ	rci	ele)			57			
		4	ro	m	D۴	ir	Ыi.	N	1	ŢĿ,	ikn	6 <i>5</i> 5	5 f	Req	b'y	4	8(59	41		Use	2	94	-0	3 3	⁻ pc	p					
			ōō.	R	m	F.I	205	s'g	h				ر ج	יי - זוי –	J P Tot	cp al	Bo	Gon Se	crę (4	e "-	Rv Ĩre	tr st	} f	2rm	eab	e (Bas	24	4"	Cr	boE	S
hearl	er	6	ter	nati	و	(7 5 ~	#	1	Ał	sov	e	-andala Sarah			1: 2	25''	Su Bin	rfo dev	ce.	•	1.2	13((a	2,40 10))=	07	δρ ο					Sec. 171 (51)	······································
															4'	۲	Bat	śĊ		•	4	(o	40)	2	1.6	2						
				I - Secol da																		2	96	<u>ح ر</u>	2.90		C)K		•		
													· · · · ·																			

Appendix IV Boring Logs

CONSULTING ENGINEERS

Sheet No. <u>1</u> of <u>1</u>

State	Tenne	essee		Latitude <u>35</u> .	40743 ^o	Lon	gitude	89.38899 ⁰				
County	y <u>Ha</u>	ywood		Location 21+00 CL Ramp A								
Projec	t Name	Solar 1	Farm Information & Welcome Center	Surface Elevation 345.6 ft								
Projec	t Type	Subsur	face Investigation	Dated Started	10/11/20	<u>010</u> Co	ompleted	10/11/2	010			
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te						
Hole N	Number	<u>B-1</u>	Total Depth36 ft	Depth to Water	r	Date	e Measure	d				
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре			
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)			
^{345.6 ft} 345	0		Ground Line									
345	-		¬Topsoil Brown, lean clay.	م0								
340	5				MC-1	3.0			MC/Bag			
340			Dark brown, lean clay.	6.5	Bag #100	5.0						
	10		Dark brown, ican clay.		MC-2	8.0			MC/Bag			
335				11.5	Bag #101	10.0						
_	-		Reddish gray, lean clay with sand.		MC-3	13.0			MC/Bag			
330	15			16.5	Bag #102	15.0			MC/Dag			
	-		Gray, sandy lean clay.			18.0						
325	20				MC-4	18:8			MC			
_						23.0						
320	25				MC-5	25.0			MC			
	-				Bag #103	28.0			Bag			
315	30				MC-6	30.0			MC			
	-											
310	35			36.0	MC-7	34.0			MC			
	-		No Refusal & Boring Terminated @ 36.	.0' (Elev. 309.6).		36.0						
305	40											
300	45											
	50											
295	1											
	_ 55											
290												
-	60											
							1	1	1			

Sheet No. _____ of ____

State	Tenne	essee		_ Latitude35.	40662 ⁰	Lon	gitude	89.3897 ⁰			
County	/ <u>Hay</u>	ywood		Location <u>25+00</u> 80' Rt. Ramp A							
Project	t Name	Solar	Farm Information & Welcome Center	_ Surface Elevati	ion <u>333</u>	.5 ft					
Project	t Type	Subsu	face Investigation	_ Dated Started	11/5/201	<u>10</u> Co	ompleted	11/5/201	0		
Driller	D. H	ertter	Logged by B. Williams	_ Depth to Water	:: Immedia	te					
Hole N	lumber	B-2	Total Depth 28 ft	_ Depth to Water	• 	Date	e Measure	d			
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
333.5 ft	0		Ground Line								
_			∖Topsoil Brown lean clay.	0,5	1	0.5					
330	5		5								
325	10				MC-1				MC		
_											
320	15										
_	13					15.0					
315	20			19.5	,						
	20		Gray, sandy lean clay.								
310						24.0					
	_ 25				MC-2				MC		
305			No Refusal & Boring Terminated @ 28	^{28.0} 3.0' (Elev. 305.5).		28.0					
	30										
300											
_	35										
295											
	40										
290											
_	45										
285											
	_ 50										
280											
	_ 55										
275											
	60										

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	40582 ^o	Lon	gitude	89.39056 ⁰	
County	/ <u>Hay</u>	ywood		Location <u>29</u>	+00	43' Rt. Ra	amp A		
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>349</u>	.1 ft			
Project	t Type	Subsu	face Investigation	Dated Started	11/5/201	<u>10</u> Co	ompleted	11/5/201	0
Driller	B. W	illiams	Logged by D. Hertter	Depth to Water	:: Immedia	te			
Hole N	lumber	<u>B-3</u>	Total Depth 10 ft	Depth to Water	ſ	Date	e Measure	d	
I	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
349.1 ft	0		Ground Line		_	0.5			
=			∑Topsoil Brown, lean clay.	0,5		0.5			
345	5		•	5.0	MC-1	5.0			MC
			Red, lean clay.		MC-2	5.0			MG
340	10			10.0		10.0			MC
			No Refusal & Boring Terminated @ 10.0)' (Elev. 339.1).		10.0			
335	15								
	_ 15								
330	20								
=	20								
325									
_	_ 25								
320									
=	30								
315									
	35								
310									
	40								
205 -									
305	_ 45								
300	_ 50								
295	_ 55								
=									
290	60								

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	40835 ^o	Lon	gitude	89.38639 ⁰	
County	y <u>Ha</u>	ywood		Location <u>31</u>	+00	33' Rt. Ra	amp B		
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>346</u>	.1 ft			
Project	t Type	Subsu	face Investigation	Dated Started	11/5/201	<u>10</u> Co	ompleted	11/5/202	10
Driller	D. H	ertter	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	Number	<u>B-4</u>	Total Depth <u>10 ft</u>	Depth to Water	• 	Date	e Measure	d	
I	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
346.1 ft	0		Ground Line						
345			∑Topsoil Brown & red, lean clay.	0,5	4				
=	_ 5					3.0			
340					MC-1				MC/Bag
=	10			10.0	Bag #300	10.0			
335			No Refusal & Boring Terminated @ 10.0	' (Elev. 336.1).		10.0			
=	15								
330									
	20								
325	20								
320	_ 25								
315	30								
=	-								
310	35								
=									
305	40								
=	-								
300	45								
=									
295	_ 50								
290	55								
	60								

Sheet No. _____ of ____

State	Tenne	essee		_ Latitude <u>35.</u>	40807 ^o	Lon	gitude	89.38695 ⁰			
County	y <u>Ha</u> y	ywood		Location <u>33+00</u> <u>33' Rt. Ramp B</u>							
Projec	t Name	Solar]	Farm Information & Welcome Center	_ Surface Elevati	on <u>349</u>	.7 ft					
Projec	t Type	Subsur	face Investigation	_ Dated Started	11/5/201	<u>10</u> Co	ompleted	11/5/201	0		
			Logged by B. Williams	-	:: Immedia	te					
Hole N	Jumber	<u>B-5</u>	Total Depth17 ft	_ Depth to Water	• 	Date	e Measure	d			
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
349.7 ft	0		Ground Line								
_			∑Topsoil Brown, lean clay.	0,5		0.5					
345	_ 5		, ,		MC-1				MC		
=			Brown, lean clay.	7.0	,	7.0					
340	10		Brown, lean clay.								
_					MC-2				MC		
335	15								lite		
_				17.0	,	17.0					
330	_ 20		No Refusal & Boring Terminated @ 17	7.0' (Elev. 332.7).		17.0					
_	_ 20										
325	25										
	<u> </u>										
320	30										
	_ 30										
315	35										
	_ 33										
310	40										
	1_ 40 										
305	45										
	45										
300											
	50										
295											
273 <u> </u>	55										
290	60										
L <u>-</u> /v	60					1	1	1			

Florence & Hutcheson

.....

State	State Tennessee			Latitude <u>35</u>	.40783 ^o	Lon	gitude	89.38756 ^o		
Count	y <u>Ha</u>	ywood		Location <u>35+00</u> <u>33' Rt. Ramp B</u>						
Projec	t Name	Solar]	Farm Information & Welcome Center	Surface Elevat	ion <u>354</u>	.6 ft				
Projec	t Type	Subsu	rface Investigation	Dated Started 10/20/2010 Completed 10/20/2010						
Driller	R. C	assell	Logged by A. Bridges	Depth to Water: Immediate						
Hole N	Number	<u>B-6</u>	Total Depth 17 ft	Depth to Water Date Measured						
	Litholog	у		Overburden	110.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
354.6 ft	_ 0		Ground Line							
			Brown, lean clay.		MC-1 Bag #202	0.0			MC/Bag	
350	_ 5				MC-2	5.0			MC	
345	-				MC-3	5.0				
345	10			10.0		10.0			MC	
_			Brown, lean clay with sand.			10.0				
340	15				MC-4	15.0			MC	
-				17.0	MC-5	15.0 17.0			MC	
340	20		No Refusal & Boring Terminated @ 17.0	' (Elev. 337.6).		17.0				
	20									
330	_ 25									
-	23									
325										
	30									
320										
520	35									
315										
-	40									
310 -	-									
310	45									
205	-									
305	50									
	-									
300	55									
	-									
295	60									

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	State Tennessee			_ Latitude <u>35.</u>	40766 ⁰	Lon	gitude	89.3884 6 ⁰			
County	/ <u>Ha</u>	ywood		_ Location <u>38</u>	+00	CL Ramp) B				
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>350</u>	.4 ft					
Project	t Type	Subsu	face Investigation	_ Dated Started	Dated Started <u>10/10/2010</u> Completed <u>10/10/2010</u>						
Driller	R. C	assell	Logged by B. Williams	_ Depth to Water	:: Immedia	te					
Hole N	lumber	B-7	Total Depth24 ft	Depth to Water Date Measured							
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
350 ^{350.4 ft}	0		Ground Line		_						
			Topsoil Brown, lean clay.	0,6		2.0					
345	5				MC-1 Bag #104	4.0			MC/Bag		
			Dark brown, lean clay.	6.0	<u>'</u>						
340	10				MC-2	8.0			MC/Bag		
			Reddish brown, lean clay with sand.	11.5	Bag #105	10.0					
	15		redución oro wil, real eray with band.		MC-3	13.0			MC/Bag		
335	_ 15		Brownish gray & grayish brown, sandy	lean alaw	Bag #106	15.0					
_	20		brownish gray & grayish brown, sandy	lean clay.	MC-4	18.0			MC/Bag		
330	20				Bag #107	20.0 22.0					
_	25			24.0	MC-5	22.0			MC/Bag		
325	25		No Refusal & Boring Terminated @ 24	4.0' (Elev. 326.4).	Bag #108						
_											
320	30										
_											
315	35										
310	40										
_											
305	45										
_											
300	_ 50										
-											
295	_ 55										
	60										

CONSULTING ENGINEERS

State	State Tennessee			Latitude <u>35.</u>	40476 ⁰	Lon	gitude	89.39107 ⁰		
Count	y <u>Ha</u>	ywood		Location <u>40</u>	+00	33' Rt. R	amp C			
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>348</u>	.2 ft				
Projec	t Type	Subsu	face Investigation	Dated Started	11/6/201	<u>10</u> Co	ompleted	11/6/20	10	
Driller	B. W	illiams	Logged by D. Hertter	Depth to Water: Immediate						
Hole N	Jumber	B-8	Total Depth 10 ft	Depth to Water Date Measured						
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
348.2 ft	0		Ground Line							
			∖Topsoil Brown, lean clay.	0,5		0.5				
345	_ 5		-	5.0	MC-1 Bag #301				MC/Bag	
			Brown & red, lean clay.	5.0		5.0				
340	10			10.0	MC-2 Bag #302				MC/Bag	
	10		No Refusal & Boring Terminated @ 10.	0' (Elev. 338.2).		10.0				
335										
_	15									
330										
_	20									
325										
	_ 25									
320										
	30									
315										
	_ 35									
210 -										
310	40									
305	45									
_										
300	-									
	_ 50									
295										
	_ 55									
290										
	60									

Sheet No. <u>1</u> of <u>1</u>

State <u>Tennessee</u>				Latitude <u>35.</u>	40509 ^o	Lon	gitude	89.39054 ^o	
County	y <u>Ha</u>	ywood		Location <u>42</u>	+00	33' Rt. R	amp C		
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>355</u>	ft			
Project	t Type	Subsu	rface Investigation	Dated Started <u>11/6/2010</u> Completed <u>11/6/2010</u>					
Driller	D. H	ertter	Logged by B. Williams	Depth to Water: Immediate					
Hole N	Jumber	<u> </u>	Total Depth 19 ft	Depth to Water Date Measured					
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
353 ^{55.0 ft}	0		Ground Line		_	0.5			
-			∑Topsoil Yellowish orange, lean clay.	0,5		0.5			
350	5				MC-1				MC
_	-			8.0					
345	10		Tan, lean clay.	8.0		8.0			
_									
340	15				MC-2				MC
-									
335	20		No Refusal & Boring Terminated @ 19.0	(Elev. 336.0).		19.0			
_			3 1 1 1 1 1 1 1 1 1 1	(
330	_ 25								
325	30								
320	35								
315	40								
310	45								
305	50								
300	55								
	- 55								
295	60								
475	00				l	1	1	1	l.

County Harwood Cocation $44+00$ C1. Ramp C Project Name Subscrace lowestigation Data Startd 116/2010 Completed 116/2010 Project Type Subscrace lowestigation Data Startd 116/2010 Completed 116/2010 Driller B. Williams Logged by D. Herriter Depth Water: Immediate Immediate Ithology Beyn O Overburden Sample Depth Rec. RC0 RC0 Ithology Opeth No. Depth Rec. RC0 RC0 Rec. RC0 RC0 340 0 Ground Line Rec. Rec. RC0 RC0 <td< th=""><th>State</th><th>Tenne</th><th>essee</th><th></th><th>Latitude <u>35.</u></th><th>4054 ^o</th><th> Lon</th><th>gitude</th><th>89.38999 ⁰</th><th></th></td<>	State	Tenne	essee		Latitude <u>35.</u>	4054 ^o	Lon	gitude	89.38999 ⁰		
Project Type Subsurface Investigation Dated Started 11/6/201 Complet 11/6/201 Driller B.10 Total Depth 10 ft Depth to Water: Immediate	County	y <u>Ha</u>	ywood		Location <u>44</u>	+00	CL Ram	o C			
Driller B-Williams Logged by D. Herter Depth to Water Immediate Immediat Immediate Immediate <td>Projec</td> <td>t Name</td> <td>Solar</td> <td>Farm Information & Welcome Center</td> <td>Surface Elevati</td> <td>ion <u>343</u></td> <td>.2 ft</td> <td></td> <td></td> <td></td>	Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>343</u>	.2 ft				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Project	t Type	Subsu	rface Investigation	Dated Started	11/6/201	<u>10</u> Co	ompleted	11/6/201	10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Driller	<u> </u>	illiams	Logged by D. Hertter	-						
Lithelogy Overrunden No. Depth (ft) Blows Pype Elev. Depth Symbol Description Rock Core Core Run Rick Reck R(ft) (ft)	Hole N	Jumber	B-10	Total Depth 10 ft	Depth to Water Date Measured						
Here. Depth Symbol Description Role Core No. Run (ft.) (%) (%) (%) 340 0 Ground Line 0.5]	Litholog	у		Overburden	No.	Depth	(ft.)			
340 5 MC-1 MC 355 10 No Refusal & Boring Terminated @ 10.0° (Elev. 333.2). 10.0 300 15 10 No Refusal & Boring Terminated @ 10.0° (Elev. 333.2). 10.0 320 22 20 20 10.0 320 25 30 10.0 10.0 300 40 10.0 10.0 10.0 300 45 50 10.0 10.0 290 55 50 10.0 10.0 285 10 10.0 10.0 10.0	Elev.	Depth	Symbol	Description	Rock Core		Run			RQD (%)	
340 5 Brown, lean clay. MC-1 MC-1 335 10 No Refusal & Boring Terminated @ 10.0° (Elev. 333.2). 10.0 10.0 330 15 225 20 20 230 25 310 -25 315 -30 310 -35 -30 300 -45 -50 -40 -45 -50 -50 220 -55 -50 -50 -50 -50 -50 285 -50 -50 -50 -50 -50 -50 -50 285 -50 -50 -50 -50 -50 -50 -50 -50 285 -50 <	343.2 ft	0				_	o -				
300 -5 MC-1 MC-1 330 -10 No Refusal & Boring Terminated @ 10.0° (Elev. 333.2). 10.0 10.0 330 -15 -15 -16 10.0 10.0 320 -25 -20 -25 -16 -16 -16 310 -35 -30 -31 -40	240				05	1	0.5				
335 -10 330 -15 325 -20 320 -25 315 -30 310 -35 305 -40 300 -45 295 -50 280 -55		_ 5				MC 1				MG	
10 No Refusal & Boring Terminated @ 10.0° (Elev. 333.2). 10.0 330 15 10.0 320 20 25 310 310 10.0 300 40 300 45 290 55 285 10.0	225 -					MC-1				MC	
330 15 325 20 326 25 316 30 300 45 295 55 285 55		_ 10			10.0	,	10.0				
$ \begin{array}{c} 15 \\ 325 \\ -20 \\ 320 \\ -25 \\ 315 \\ -30 \\ 310 \\ -35 \\ 305 \\ -40 \\ 300 \\ -45 \\ 205 \\ -50 \\ 290 \\ -55 \\ 285 \\ \end{array} $				No Refusal & Boring Terminated @ 10.0	' (Elev. 333.2).		10.0				
$\begin{array}{c} 20\\ 320\\ -25\\ 315\\ -30\\ 300\\ -40\\ 300\\ -45\\ 295\\ -55\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ -85\\ -85\\ -85\\ -85\\ -85\\ -85\\ -$	330	_ 15									
$\begin{array}{c} 20\\ 320\\ -25\\ 315\\ -30\\ 300\\ -40\\ 300\\ -45\\ 295\\ -55\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ 285\\ -85\\ -85\\ -85\\ -85\\ -85\\ -85\\ -85\\ -$	225										
$\begin{array}{c} 320 \\ -25 \\ 315 \\ -30 \\ 310 \\ -35 \\ 305 \\ -40 \\ 300 \\ -45 \\ 295 \\ -50 \\ 290 \\ -55 \\ 285 \end{array}$	325	_ 20									
$ \begin{array}{c} 2.5 \\ 315 \\ -30 \\ 310 \\ -35 \\ 305 \\ -40 \\ 300 \\ -45 \\ 295 \\ -50 \\ 290 \\ -55 \\ 285 \\ -55 \\ 285 \\ -55 \\ $											
$\begin{array}{c} 315 \\ - 30 \\ 310 \\ - 35 \\ 305 \\ - 40 \\ 300 \\ - 45 \\ 295 \\ - 50 \\ 290 \\ - 55 \\ 285 \end{array}$	320	_ 25									
310 - 35 305 - 40 300 - 45 295 - 50 290 - 55 285 - 50											
310 - 35 305 - 40 300 - 45 295 - 50 290 - 55 285 - 55	315	30									
$\begin{array}{c} - 35 \\ 305 \\ - 40 \\ 300 \\ - 45 \\ 295 \\ - 50 \\ 290 \\ - 55 \\ 285 \end{array}$											
305 - 40 300 - 45 295 - 50 290 - 55 285 - 50	310	35									
$ \begin{array}{c} - 40 \\ 300 \\ - 45 \\ 295 \\ - 50 \\ 290 \\ - 55 \\ 285 \\ - \\ \end{array} $											
300 - 45 295 - 50 290 - 55 285 - 55	305	40									
$ \begin{array}{c} - 45 \\ 295 \\ - 50 \\ 290 \\ - 55 \\ 285 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$											
295 50 290 55 285	300	45									
290 55 285											
	295	50									
	290	55									
	285	60									

-8

Sheet No. <u>1</u> of <u>1</u>

State	State Tennessee			Latitude <u>35.</u>	40566 ⁰	Lon	gitude	89.38869 ⁰			
County	<u>Ha</u>	ywood		Location <u>48</u>	+00	CL Ram	o C				
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>348</u>	.4 ft					
Project	t Type	Subsu	rface Investigation	Dated Started 10/20/2010 Completed 10/20/2010							
Driller	S. G	ower	Logged byS. Gower	Depth to Water: Immediate							
Hole N	lumber	B-11	Total Depth <u>12 ft</u>	Depth to Water Date Measured							
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
348.4 ft	0		Ground Line								
			∖Topsoil Brown, lean clay.	0/4		0.4					
345	5		biown, ioun only.								
_					MC-1				MC/Bag		
340	10				Bag #109						
_	10			12.0							
335			No Refusal & Boring Terminated @ 12.0	' (Elev. 336.4).		12.0					
_	15										
330											
	20										
325											
_	_ 25										
320											
<u> </u>	30										
315	35										
_											
310	40										
	⊢ ⁺ ∪										
305	45										
	45										
300											
-	_ 50										
295											
	_ 55										
290											
	60										

State	Tenne	essee		Latitude <u>35.</u>	40624 ^o	Lon	gitude	<mark>89.38772</mark> ⁰		
County	y <u>Ha</u>	ywood		Location <u>52</u>	+00	CL Ram	o C			
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	on <u>346</u>	.9 ft				
Project	t Type	Subsu	rface Investigation	Dated Started	10/20/20	010 Co	ompleted	10/20/2	010	
Driller	S. G	ower	Logged by S. Gower	Depth to Water: Immediate						
Hole N	Jumber	B-12	Total Depth 38 ft	Depth to Water Date Measured						
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
346.9 ft	0		Ground Line							
345			∑Topsoil Brown, lean clay.	ىتر0		0.5				
_	_		Brown, lean clay.							
340	_ 5									
					MC-1				MC/Bag	
_	_ 10				Bag #110					
335										
_	_ 15			15.0	,	15.0				
330	-		Gray, sandy lean clay.							
_	_ 20									
325										
_										
320	_ 25				MC-2					
					Bag #111				MC/Bag	
_	_ 30									
315										
_	_ 35									
310	-			28.00						
_	40		No Refusal & Boring Terminated @ 38.0	' (Elev. 308.9).		38.0				
305										
_	15									
300	45									
_	_ 50									
295										
_	_ 55									
290	1									
	60									

Sheet No. <u>1</u> of <u>1</u>

County Haywood Location 60+00 CL Ramp D							
	Location <u>60+00 CL Ramp D</u>						
Project Name Solar Farm Information & Welcome Center Surface Elevation 344.5 ft	Surface Elevation 344.5 ft						
Project Type <u>Subsurface Investigation</u> Dated Started <u>10/22/2010</u> Completed	Dated Started 10/22/2010 Completed 10/22/2010						
Driller <u>R. Cassell</u> Logged by <u>A. Bridges</u> Depth to Water: Immediate	Depth to Water: Immediate						
Hole Number <u>B-13</u> Total Depth <u>50 ft</u> Depth to Water Date Measure	Depth to Water Date Measured						
LithologyOverburdenSample No.DepthRec. (ft.)	Blows	Туре					
Elev.DepthSymbolDescriptionRock CoreCore No.RunRec (ft.)	Rec. (%)	RQD (%)					
344.5 ft 0 Ground Line							
Brown, lean clay. 0.0		MC					
340 5 5.0 <u>MC-2</u> 5.0		МС					
Gray, sandy lean clay.							
335 10		MC					
330 15		MC					
MC-5		MC					
——————————————————————————————————————		MC/Bag					
320 25 Bag #112 25.0		Ū					
		МС					
		inc					
		MC					
310 35 MC-8 35.035.0 35.035.035.035.035.035.035.035.035.035		MC					
Orange, silty sand.							
305 40		MC/Bag					
300 45		MC					
MC-11		MC					
295 50 50.0' 50.0' 50.0' No Refusal & Boring Terminated @ 50.0' (Elev. 294.5). 50.0 50.0'							

CONSULTING ENGINEERS

Sheet No. <u>1</u> of <u>1</u>

State	State Tennessee			Latitude <u>35</u> .	40666 ⁰	Lon	gitude	89.38664 ⁰		
County	/ <u>Ha</u>	ywood		Location <u>64</u>			-			
Project	t Name	Solar]	Farm Information & Welcome Center	Surface Elevati	ion <u>357</u>	.1 ft				
Project	t Type	Subsu	face Investigation							
			Logged by A. Bridges	•						
Hole N	lumber	<u>B-14</u>	Total Depth 10 ft	Depth to Water Date Measured						
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
357.1 ft	0		Ground Line			0.0				
355			Light brown, lean clay.		MC-1	0.0 2.5			MC/Bag	
_	_ 5			5.0	Bag #200 MC-2	5.0			MC	
350			Dark brown, lean clay.		MC-3	5.0				
=	10			10.0	Bag #201	10.0			MC/Bag	
345			No Refusal & Boring Terminated @ 10.0	' (Elev. 347.1).		10.0				
	15									
340	15									
	20									
335	20									
	25									
330										
	30									
325										
	_ 35									
320										
	40									
315										
	45									
310										
=	_ 50									
305										
	_ 55									
300										
	60									

Florence & Hutcheson

.....

State	Tenne	essee		Latitude <u>35.</u>	40715 ^o	Lon	gitude	89.38633 ⁰		
County	/ <u>Ha</u>	ywood		Location <u>66</u>	+00	33' Rt. Ra	amp D			
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>353</u>	.7 ft				
Project	t Type	Subsu	rface Investigation	Dated Started 10/20/2010 Completed 10/20/2010						
Driller	R. C	assell	Logged by <u>A. Bridges</u>	Depth to Water: Immediate						
Hole N	lumber	<u>B-15</u>	Total Depth14 ft	Depth to Water Date Measured						
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
353.7 ft	0		Ground Line							
			Light brown, lean clay.		MC-1	0.0			MC	
350	5			5.0	MC-2	2.5			MC	
_			Dark brown, lean clay.			5.0				
345	10				MC-3				MC	
	10		Dark brown, lean clay with sand.	10.0		10.0				
340	15		No Refusal & Boring Terminated @ 14.0	^{14.0})' (Elev. 339.7).	MC-4	14.0			MC	
_										
335	20									
330										
	25									
325	30									
320	35									
315	40									
310										
	45									
305	50									
300	_ 55									
295										
	60									

State	State <u>Tennessee</u>			Latitude <u>35.</u>	40775 ^o	Lon	gitude	89.38627 ⁰		
County	/ Ha	ywood		Location <u>68</u>	+00	49' Lt. Ra	ımp D			
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevation 344.6 ft						
Project	t Type	Subsu	rface Investigation	Dated Started <u>11/6/2010</u> Completed <u>11/6/2010</u>						
Driller	D. H	ertter	Logged byB. Williams	Depth to Water: Immediate						
Hole N	lumber	<u>B-16</u>	Total Depth <u>10 ft</u>	Depth to Water Date Measured						
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
344.6 ft	0		Ground Line							
_			Topsoil Gray & brown, lean clay.	0,5		0.5				
340	_ 5				MC-1 Bag #303	5.0			MC/Bag	
=						5.0				
335	10			10.0	MC-2 Bag #304	10.0			MC/Bag	
_	10		No Refusal & Boring Terminated @ 10.0	' (Elev. 344.6).		10.0				
330	_ 15									
_	15									
325	20									
	_ 20									
320	25									
	_ 25									
315										
	_ 30									
310										
310	_ 35									
305	_ 40									
300	_ 45									
295	_ 50									
-										
290	_ 55									
=										
285	60									

Sheet No. _____ of ____

State	State <u>Tennessee</u>				Latitude <u>35.</u>	40804 ^o	Lon	gitude	89.38563 ⁰		
County	y <u>Hay</u>	ywood			Location 70	+00	33' Rt. Ra	amp D			
Project	t Name	Solar]	Farm Information & We	lcome Center	Surface Elevati	on <u>339</u>	.2 ft				
Project	t Type	Subsu	rface Investigation		Dated Started <u>11/6/2010</u> Completed <u>11/6/2010</u>						
Driller	B. W	illiams	Logged byI	D. Hertter	Depth to Water: Immediate						
Hole N	Jumber	B-17	Total Depth	10 ft	Depth to Water Date Measured						
	Litholog	y			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре	
Elev.	Depth	Symbol	Descripti	on	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)	
339.2 ft	0		Ground L	ine							
			Brown, lean clay.		0.5		0.5				
335	5										
_						MC-1				MC	
330	10										
=			No Refusal & Boring Te	rminated @ 10.0	(Elev. 329.2).		10.0				
325	_ 15										
=											
320	20										
315											
	_ 25										
310	30										
305	35										
=											
300	40										
=	•										
295	45										
290											
	_ 50										
285	55										
=	<u> </u>										
	60										

State	Tenne	essee		Latitude <u>35.</u>	40849 ⁰	Lon	gitude	89.38523 ^o	
County	<u>Ha</u>	ywood		Location <u>72</u>	+00	CL Ram	D		
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	on <u>338</u>	.6 ft			
Project	t Type	Subsu	rface Investigation	Dated Started	11/6/201	<u>10</u> Co	ompleted	11/6/201	10
Driller	<u> </u>	illiams	Logged by D. Hertter	Depth to Water	:: Immedia	te			
Hole N	lumber	<u>B-18</u>	Total Depth <u>10 ft</u>	Depth to Water	•	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
338.6 ft	0		Ground Line						
=			∑Topsoil Gray, lean clay.	0,5		0.5			
335	5								
					MC-1 Bag #305				MC/Bag
330	10			10.0	,	10.0			
_			No Refusal & Boring Terminated @ 10.0	' (Elev. 328.6).		10.0			
325	15								
320	20								
	20								
315									
	_ 25								
310									
=	30								
305									
	35								
300									
_	40								
295									
=	45								
290									
_	_ 50								
285									
	_ 55								
280									
	60								

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	40417 ⁰	Lon	gitude	89.39303 ^o	
Count	y <u>Ha</u>	ywood		Location <u>70</u>	+00	75' Lt. W	B Exit Ln.		
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	on <u>328</u>	.8 ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	11/8/201	<u>lo</u> Co	ompleted	11/8/201	10
Driller	B. C	ayton	Logged by B. Cayton	Depth to Water	:: Immedia	te			
Hole N	Number	<u>B-19</u>	Total Depth 8 ft	Depth to Water	•	Date	e Measure	d	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
328.8 ft	0		Ground Line		-				
_			Topsoil Brown, red & gray, lean clay.	1.0	,	1.0			
325	_ 5				MC-1				MC/Bag
=					Bag #500				
320	10		No Refusal & Boring Terminated @ 8.0'	(Elev. 320.8).		8.0			
_									
315	15								
310									
310	_ 20								
	1								
305	_ 25								
300									
_	30								
295	-								
_	_ 35								
290									
	40								
285									
=	45								
280									
	50								
275	55								
270	60								
<u> </u>	4 00				I		I	1	1

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	40484 ^o	Lon	gitude	89.39196 ⁰	
Count	y <u>Ha</u>	ywood		Location <u>74</u>	+00	78' Lt. W	B Exit Ln.		
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>342</u>	.7 ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/201	10
Driller	B. C:	ayton	Logged by B. Cayton	Depth to Water	: Immedia	te			
Hole N	Jumber	B-20	Total Depth <u>10 ft</u>	Depth to Water	<u> </u>	Dat	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
342.7 ft	_ 0		Ground Line						
340	-		Topsoil Brown & gray, lean clay.	0,5	1	0.5			
	5		Dio ni co giwy, roun olwy.						
335					MC-1				MC
333	10			10.0					
			No Refusal & Boring Terminated @ 10.0	^{10.0} (Elev. 332.7).		10.0			
330	1.5								
-	15								
325	-								
=	20								
320									
=	25								
315									
-	30								
310	-								
_	35								
305	4								
=	40								
300									
=	_ 45								
295									
	_ 50								
290	-								
	_ 55								
285									
203	60								
-		•			•			•	

Florence & Hutcheson

.....

Sheet No. <u>1</u> of <u>1</u>

State	Tenno	essee		Latitude <u>35.</u>	40528 ^o	Lon	gitude	89.39153 ⁰	
County	y <u>Ha</u>	ywood		Location <u>76</u>	+00	128' Lt. V	VB Exit Lr	1.	
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	on <u>351</u>	.2 ft			
Project	t Type	Subsu	rface Investigation	Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/201	0
Driller	D. H	ertter	Logged by B. Williams	Depth to Water	:: Immedia	te			
Hole N	Jumber	B-21	Total Depth17 ft	Depth to Water	• 	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
351.2 ft	_ 0		Ground Line		_	0.5			
350	-		Topsoil Brown, lean clay.	0,5		0.5			
345	5				MC-1				MC
	10			10.0	,	10.0			
340			Tan, silty sand.	10.0		10.0			
335	15			17.0	MC-2				MC
330	20	110000000000	No Refusal & Boring Terminated @ 17.0	^{17.0} (Elev. 334.2).		17.0			
325	25								
320	30								
315	35								
310	40								
305	45								
300	50								
295	55								
	60								

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenne	essee		Latitude <u>35.</u>	40564 ^o	Lon	gitude	<mark>89.39102</mark> ⁰	
County	/ <u>Ha</u>	ywood		Location 78	+00	141' Lt. V	VB Exit Lı	1.	
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	on <u>357</u>	.7 ft			
Project	t Type	Subsu	face Investigation	Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/202	10
Driller	D. H	ertter	Logged by B. Williams	Depth to Water	:: Immedia	te			
Hole N	lumber	B-22	Total Depth14 ft	Depth to Water	•	Date	e Measure	d	
1	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
357.7 ft	0		Ground Line						
355			∑Topsoil Brown, lean clay.	0,5		0.5			
	5		Dio mi, iouri oraș.		MC-1				МС
350									
330	10		Red, silty sand.	8.0	,	8.0			
					MC-2				MC/Bag
345	15				Bag #501				
	15		Light brown, lean clay.	15.0		15.0			
340									
	20				MC-3				MC
335									
	25		White, silty sand.	25.0	,	25.0			
330					MC-4 Bag #502				MC/Bag
	30		No Refusal & Boring Terminated @ 30.	0' (Elev. 327.7).	, Dag #302	30.0			
325									
	35								
320									
	40								
315									
	_ 45								
310									
	_ 50								
305									
	55								
300									
	60								

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	40853 ^o	Lon	gitude	89.38611 ⁰	
County	/ <u>Ha</u>	ywood		Location <u>96</u>	+00	100' Lt. V	VB Ent. Lr	1.	
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	on <u>347</u>	.4 ft			
Project	t Type	Subsu	rface Investigation	Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/202	10
Driller	B. C:	ayton	Logged by M. Quimby	Depth to Water	: Immedia	te			
Hole N	lumber	B-23	Total Depth <u>10 ft</u>	Depth to Water	•	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
347.4 ft	0		Ground Line						
345			∑Topsoil Brown, red & gray, lean clay.	0/5		0.5			
	_ 5		Bio (iii, iou co grug, iouir orag).						
340					MC-1 Bag #600				MC/Bag
	10			10.0					
335	10		No Refusal & Boring Terminated @ 10.0	^{10.0} (Elev. 337.4).		10.0			
	1.5								
	_ 15								
330									
_	_ 20								
325									
=	_ 25								
320									
=	_ 30								
315									
	_ 35								
310									
	_ 40								
305									
=	_ 45								
300									
=	_ 50								
295									
	55								
290	<u> </u>								
	(0)								
L	60								

CONSULTING ENGINEERS

State	State <u>Tennessee</u>				Latitude <u>35.</u>	40883 ^o	Lon	gitude	89.38555 ⁰	
County	/ <u>Hay</u>	ywood			Location <u>98</u>	+00	88' Lt. W	B Ent. Ln.		
Project	t Name	Solar	Farm Information & W	elcome Center	Surface Elevati	on <u>339</u>	.6 ft			
Project	t Type	Subsu	face Investigation		Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/201	10
Driller	B. C:	ayton	Logged by	B. Cayton	Depth to Water	:: Immedia	te			
Hole N	lumber	B-24	Total Depth	10 ft	Depth to Water	·	Date	e Measure	d	
	Litholog	y			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Descrip	tion	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
339.6 ft	0		Ground	Line						
=			Topsoil Brown, lean clay.		1.0	,	1.0			
335	5		, <u>,</u>							
=						MC-1				MC
330	10				10.0'	,	10.0			
_			No Refusal & Boring T	erminated @ 10.0	'(Elev. 329.6).		10.0			
325	15									
_	13									
320	20									
_	20									
315										
	_ 25									
310										
	30									
305										
505	35									
300	40									
295	45									
290	_ 50									
-										
285	55									
=										
280	60									

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	40946 ^o	Lon	gitude	89.38445 ^o	
County	y <u>Ha</u>	ywood		Location <u>10</u>	2+00	73' Lt. W	<u>B Ent. Ln.</u>		
Projec	t Name	Solar]	Farm Information & Welcome Center	Surface Elevati	ion <u>329</u>	.9 ft			
Project	t Type	Subsu	face Investigation	Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/201	0
Driller	B. C:	ayton	Logged by B. Cayton	Depth to Water	:: Immedia	te			
Hole N	Jumber	B-25	Total Depth 10 ft	Depth to Water	ſ	Date	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
329.9 ft	_ 0		Ground Line		_	0.5			
_			∑Topsoil Gray, lean clay.	0/5		0.5			
325	5				MC-1				MG
_					MC-1				MC
320	10			10.0	,	10.0			
_			No Refusal & Boring Terminated @ 10.0	' (Elev. 319.9).		10.0			
315	15								
_	-								
310	_ 20								
=									
305	_ 25								
_									
300	30								
_									
295	35								
290	40								
285	45								
	- +J								
280	50								
	_ 50								
275	EE								
	55								
270	60								
_ 270	60								

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenne	essee		Latitude <u>35.</u>	40874 ^o	Lon	gitude	89.3848 4 ^o	
Count	y <u>Ha</u> y	ywood		Location99	+50	65' Rt. El	<u>B Exit Ln.</u>		
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>334</u>	.4 ft			
Projec	t Type	Subsu	face Investigation	Dated Started	11/8/201	<u>10</u> Co	ompleted	11/8/202	10
		-	Logged by D. Hertter	-					
Hole N	Number	B-26	Total Depth 10 ft	Depth to Water	<u> </u>	Dat	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
334.4 ft	0		Ground Line		_				
_			Topsoil Brown, red & gray, lean clay.	0,5	1	0.5			
330	_ 5								
_					MC-1 Bag #700				MC/Bag
325	10			10.0	r	10.0			
_			No Refusal & Boring Terminated @ 10	.0' (Elev. 324.4).		10.0			
320	_ 15								
315	_ 20								
310	25								
305	30								
_									
300	35								
=									
295	40								
=									
290	45								
285	_ 50								
=									
280	_ 55								
=	<u> </u>								
275	60								
	00				1	1	1	1	1

CONSULTING ENGINEERS

State	Tenne	essee			Latitude <u>35.</u>	4094 ^o	Lon	gitude	<mark>89.38376</mark> ⁰	
County	/ <u>Ha</u>	ywood			Location <u>10</u>	3+50	67' Rt. El	<u>B Exit Ln.</u>		
Project	t Name	Solar	Farm Information & Welco	ome Center	Surface Elevati	on <u>331</u>	.6 ft			
Project	t Type	Subsu	rface Investigation		Dated Started	11/9/201	<u>10</u> Co	ompleted		10
Driller	B. C:	ayton	Logged by <u>B.</u>	Williams	Depth to Water	:: Immedia	te			
Hole N	lumber	B-27	Total Depth	0 ft	Depth to Water	·	Dat	e Measure	d	
I	Litholog	y			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	1	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
331.6 ft	_ 0		Ground Line	е						
330			Topsoil Brown, lean clay.		1.0	,	1.0			
	_ 5		210 mil, 10 an 0 1ag:			MC-1				MC
325			Gray, lean clay.		6.0	,	6.0			
_	10				10.0	MC-2 Bag #701				MC/Bag
320	10		No Refusal & Boring Term	ninated @ 10.0	' (Elev. 321.6).	Dug#701	10.0			
	15									
315	_ 15									
310	_ 20									
_										
305	_ 25									
300	_ 30									
295	_ 35									
200	_ 40									
290										
	_ 45									
285										
_	_ 50									
280										
	_ 55									
275										
	60									

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenne	essee		Latitude <u>35.</u>	41006 ⁰	Lon	gitude	89.38269 ⁰	
Count	y <u>Ha</u>	ywood		Location <u>10</u>	7+50	76' Rt. El	B Exit Ln.		
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>335</u>	.1 ft			
Projec	t Type	Subsu	face Investigation	Dated Started	11/9/201	<u>10</u> Co	ompleted	11/9/201	10
Driller	B. C:	ayton	Logged by B. Williams	Depth to Water	: Immedia	te			
Hole N	lumber	B-28	Total Depth 10 ft	Depth to Water	·	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
333 ^{35.1 ft}	_ 0		Ground Line						
_			_ Topsoil Dark brown, lean clay.	1.0	•	1.0			
330	_ 5		Durk orowit, tour orag.		MC-1				МС
									ivic
325	10		Gray, lean clay.	8.0	MC-2	8.0			МС
325			No Refusal & Boring Terminated @ 10.	0' (Elev. 325.1).		10.0			_
_									
320	15								
_									
315	20								
_									
310	_ 25								
_									
305	30								
300	_ 35								
295	40								
_									
290	45								
285	_ 50								
280	55								
=	60								
					1	l .	1	1	

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35.</u>	41074 ^o	Lon	gitude	89.38164 ⁰	
County	<u>Ha</u>	ywood		Location 11	1+50	58' Rt. El	B Exit Ln.		
Project	t Name	Solar]	Farm Information & Welcome Center	Surface Elevati	on <u>341</u>	.6 ft			
Project	t Type	Subsu	rface Investigation	Dated Started	11/9/201	<u>10</u> Co	ompleted	11/9/202	10
Driller	B. C:	ayton	Logged by B. Williams	Depth to Water	:: Immedia	te			
Hole N	lumber	B-29	Total Depth <u>10 ft</u>	Depth to Water	·	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
341.6 ft	0		Ground Line						
340			Topsoil Brown, lean clay.	1.0	,	1.0			
	5								
335					MC-1 Bag #702				MC/Bag
_	10			10.0		10.0			
330			No Refusal & Boring Terminated @ 10.0	' (Elev. 331.6).		10.0			
	15								
325									
=	20								
320	20								
=	25								
315	_ 25								
=									
310	30								
_									
305	35								
300	40								
205 -	45								
295									
	_ 50								
290									
	_ 55								
285									
	60								

.....

State	tate Tennessee				Latitude <u>35.</u>	40372 ^o	Lon	gitude	89.39303 ⁰	
County	y <u>Ha</u>	ywood			Location <u>69</u>	+00	70' Rt. El	B Ent. Ln.		
Project	t Name	Solar	Farm Information & W	elcome Center	Surface Elevati	on <u>330</u>	.8 ft			
Project	t Type	Subsu	rface Investigation		Dated Started	11/9/201	<u>0</u> Co	ompleted	11/9/201	10
Driller	M. Q	Juimby	Logged by	D. Hertter	Depth to Water	: Immedia	te			
Hole N	Jumber	B-30	Total Depth	10 ft	Depth to Water		Date	e Measure	d	
	Litholog	у			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Descrip	otion	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
330.8 ft	0		Ground	Line						
330			Topsoil Brown & red, clayey sa	und	0/5		0.5			
325	5					MC-1 Bag #800				MC/Bag
320						Dag #800				
320	10	<u>800000860000</u>	No Refusal & Boring T	Cerminated @ 10.0	^{10.0} (Elev. 320.8).		10.0			
315										
315	15									
310	20									
305	25									
300	30									
300	-									
295	35									
290	40									
	45									
285										
280	50									
275	55									
	60									

.....

CONSULTING ENGINEERS

State	Tenne	essee			Latitude <u>35.</u>	40419 ^o	Lon	gitude	89.39221 ^o	
Count	y <u>Ha</u>	ywood			Location <u>72</u>	+00	65' Rt. El	<u> 8 Ent. Ln.</u>		
Projec	t Name	Solar	Farm Information & W	elcome Center	Surface Elevati	ion <u>336</u>	.7 ft			
Projec	t Type	Subsu	rface Investigation		Dated Started	11/9/201	<u>10</u> Co	mpleted	11/9/201	0
Driller	D. H	ertter	Logged by	D. Hertter	Depth to Water	r: Immedia	te			
Hole N	Number	B-31	Total Depth	10 ft	Depth to Water	r	Date	e Measure	d	
]	Litholog	у			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Descrip	otion	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
336.7 ft	0		Ground	Line		_				
335	-		Topsoil Brown, clayey sand.		0,5	5	0.5			
_	5									
330						MC-1				MC
_	10				10.0	,,	10.0			
325			No Refusal & Boring	Ferminated @ 10.0	' (Elev. 326.7).		10.0			
_	15									
320										
	20									
315										
_	25									
310	25									
_										
305	30									
_										
300	35									
295	40									
290	45									
205	_ 50									
285	1									
	_ 55									
280										
	60									

CONSULTING ENGINEERS

Sheet No. _1_ of _1_

State	Tenne	essee		Latitude <u>35.</u>	40443 ^o	Lon	gitude	89.39158 ^o	
County	/ <u>Ha</u>	ywood		Location <u>74</u>	+00	110' Rt. H	B Ent. Ln		
Projec	t Name	Solar]	Farm Information & Welcome Center	Surface Elevati	ion <u>342</u>	.4 ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	11/9/201	<u>10</u> Co	ompleted	11/9/202	10
Driller	M. Ç	uimby	Logged by D. Hertter	Depth to Water	: Immedia	te			
Hole N	lumber	B-32	Total Depth <u>10 ft</u>	Depth to Water	·	Date	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
342.4 ft	0		Ground Line						
340			∖Topsoil Brown & gray, lean clay.	0,5	1	0.5			
_	5		210 m ce gruf, reun eruf.						
335					MC-1 Bag #801				MC/Bag
	10			10.0					
330			No Refusal & Boring Terminated @ 10.0	^{10.0} (Elev. 332.4).		10.0			
	1.5								
	15								
325									
_	20								
320									
=	25								
315									
=	30								
310									
_	35								
305									
=	40								
300									
	45								
295									
=	_ 50								
290									
=	55								
285									
=	60								
					•	•	•	•	

-8

				Latitude <u>35.</u> Location					
			Farm Information & Welcome Center	Surface Elevati					
-			rface Investigation	Dated Started					
			Logged by B. Williams	Depth to Water	: Immedia	te	_		
Hole N	lumber	B-33	Total Depth 15 ft	Depth to Water		Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
337.0 ft	_ 0		Ground Line						
335			∖Topsoil Brownish tan, lean clay.	0,7		2.0			
	_ 5				MC-1 Bag #1	4.0			MC/Bag
330			Dark brown, lean clay.	6.0					
_	10				MC-2	8.0			MC/Bag
325			Reddish brown, lean clay with sand.	11.5	Bag #2	10.0			
_	15		Reduish brown, lean clay with sand.		MC-3	13.0			MC/Bag
320	13		No Refusal & Boring Terminated @ 15.0	^{15.0} (Elev. 322.0).	Bag #3	15.0			
_	1		Boring elevation estimated from Google	Earth satellite					
315	20		imagery.						
	1								
310	25								
310									
_	30								
305	-								
_	35								
300									
_	40								
295									
=	45								
290									
_	_ 50								
285									
	_ 55								
280									
	60								

-8

	tate <u>Tennessee</u>								
		-	Farm Information & Welcome Center	Surface Elevati					
-			rface Investigation	Dated Started					
			Logged by B. Williams				•		
			Total Depth 15 ft	Depth to Water Date Measured					
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
338.0 ft	0		Ground Line						
_	-		Topsoil Tannish brown, lean clay.	0,5		2.0			
335	5		ruminish oro wit, roun oray.		MC-1	4.0			MC
			Dark brown & reddish brown, lean clay.	6.0	<u>'</u>				
330					MC-2	8.0			МС
_	10					10.0			inc
325					MC-3	13.0			МС
-	15		No Refusal & Boring Terminated @ 15.0	(Elev. 323.0).	, IVIC-3	15.0			MC
320	-		Boring elevation estimated from Google	Earth satellite					
-	20		imagery.						
315									
_	_ 25								
310									
	30								
305 _	-								
	35								
200 -	-								
300	40								
_									
295	45								
_	45								
290									
_	50								
285	1								
	55								
280	-								
	60								

-B

Sheet No. _1__of _1__

County Haywood Coaction Project Name Solar Same Information & Welcone Center Surface Elevation 0.072010 $Correleted$ $109/2010$ Project Type Subsurface Investigation Dated Started $109/2010$ $Correleted$ $109/2010$ Project Type Subsurface Investigation Dated Started $109/2010$ $Correleted$ $109/2010$ Project Type Subsurface Investigation Dated Started $109/2010$ $Correleted$ $109/2010$ International Control (International Control (Internation Control (International Control (International Control					Latitude <u>35.</u>					
Project Type Subsurface Investigation Dated Started 109/201 Complet 109/201 Driller R. Casselt I ogged by B. Williams Depth to Water Depth Mcr. Hole Number B-35 Total Depth IS ft Depth to Water Date Measured Mcr. Lithology Overhunden Sample Overhunden Sample Rec. RCC. RCD. RCD. </td <td></td>										
Driller R. Cassell Logged by B. Williams Depth to Water Image: Cassell beam in the image: Cassell beam i	-									
$\begin{array}{ c c c c c } \hline I \\ I$								-		
No. Depth Depth (ft) Blows 17Pe Elev. Depth Symbo Description Rock Core Core Run Rice RCD RCD 344*09 0 Conund Line $MCBR Run Rice Rice RCD 344*09 0 Conund Line MCBR Rice Rice $	Hole N	lumber	B-35	Total Depth ft	Depth to Water	·	Date	e Measure	d	
HereDepthSymbolDescriptionRock CoreNo.Run(ft.)($\%$)($\%$)($\%$)348*50.0Ground Line		Litholog	y		Overburden	No.	Depth	(ft.)		
340 5 Topsoil 20 MC/Bag 340 5 Dark brown, lean clay. MC/Bag MC/Bag 335 10 Bag #4 4.0 MC/Bag 330 15 Brown & orange, lean clay with sand. 15.0 MC/Bag 330 15 No Refusal & Boring Terminated (0) 15.0° (Elev. 330.0). Bag #6 15.0 325 20 Boring clevation estimated from Google Earth satellite Bag #6 15.0 310 35 10 15.0 Bag #6 15.0 300 445 15.0 Bag #6 15.0 15.0 320 25 50 15.0 Bag #6 15.0 300 445 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 1	Elev.	Depth	Symbol	Description	Rock Core		Run			
340 5 MC-1 2.0 MC-1 3.0 MC-1 Bag #4 4.0 MC-3 8.0 MC-8ag 335 10 MC orange, lean clay. MC-1 Bag #5 10.0 MC/Bag 330 15 Brown & orange, lean clay with sand. 13.0 13.0 MC/Bag 330 15 No Refusal & Boring Terminated @ 15.0° (Elev. 330.0). Bag #6 15.0 MC/Bag 325 20 Boring clevation estimated from Google Earth satellite 15.0 MC/Bag 310 315 30 15.0 MC/Bag 15.0 MC/Bag 300 45 15.0 MC/Bag 15.0 MC/Bag 15.0 MC/Bag 300 45 10.0 10.0 10.0 10.0 10.0 10.0 10.0	343 ^{45.0 ft}	0				-				
340 5 MC-1 Bag #4 4.0 MC/Bag 335 10 0 8.0 10.0 10.0 330 15 15.0 MC/Bag 13.0 15.0 MC/Bag 325 20 Brown & orange, lean clay with sand. 15.0 15.0 MC/Bag 325 20 Boring elevation estimated from Google Earth satellite imagery. 15.0 MC/Bag 310 35 30 15.0 15.0 15.0 MC/Bag 310 35 90 45 15.0 15.0 15.0 16.0 300 45 10.0 15.0 15.0 16.0 <td></td> <td></td> <td></td> <td></td> <td>0/5</td> <td></td> <td>2.0</td> <td></td> <td></td> <td></td>					0/5		2.0			
335 10 MC/Bag 336 10 Brown & orange, lean clay with sand. 13.0 330 15 No Refusal & Boring Terminated @ 15.0' (Elev. 330.0). Bag #5 15.0 325 20 Boring elevation estimated from Google Earth satellite imagery. 15.0 MC/Bag 310 35 30 15.0 15.0 15.0 326 40 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 15.0 15.0 300 45 15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16	340	5					4.0			MC/Bag
335 10 MC-2 10.0 MC/Bag 330 15 Brown & orange, lean clay with sand. 13.0 13.0 330 15 No Refusal & Boring Terminated @ 15.0' (Elev. 330.0). Bag #6 15.0 325 20 Boring elevation estimated from Google Earth satellite imagery. 10.0 15.0 320 25 10.0 15.0 15.0 15.0 310 35 30 15.0 15.0 15.0 300 45 10.0 10.0 10.0 10.0 290 55 10.0 10.0 10.0 10.0				Dark brown, lean clay.	6.0	<u>'</u>				
Brown & orange, lean clay with sand. ILS Ing #3 ILS Ing #3 ILS 330 15 No Refusal & Boring Terminated @ 15.0' (Elev. 330.0). Bag #6 15.0 IS.0 325 20 Boring elevation estimated from Google Earth satellite imagery. Bag #6 15.0 IS.0 320 25 30 315 30 10 10 10 310 35 30 40 10 10 10 10 300 45 50 10 10 10 10 10 290 55 10 10 10 10 10 10	335	10								MC/Bag
330 15 ISO MC-3 ISO ISO MC/Bag 325 20 Boring clevation estimated from Google Earth satellite ISO ISO ISO 320 25 ISO ISO ISO ISO ISO 310 35 ISO ISO ISO ISO ISO 300 45 ISO ISO ISO ISO ISO 290 55 ISO ISO ISO ISO ISO	_			Brown & orange, lean clay with sand.	11.5	Bag #5				
325 - 20 $320 - 25$ $315 - 30$ $310 - 35$ $300 - 45$ $290 - 55$ 50 $290 - 55$	330	15			15.0'					MC/Bag
325 - 20 imagery. 320 - 25 315 - 30 310 - 35 305 - 40 300 - 45 290 - 55 50	_			No Refusal & Boring Terminated @ 15.0	' (Elev. 330.0).	Bag #6	15.0			
320 - 25 $315 - 30$ $310 - 35$ $305 - 40$ $300 - 45$ $295 - 50$ $290 - 55$	325	20			Earth satellite					
315 - 30 $310 - 35$ $305 - 40$ $300 - 45$ $295 - 50$ $290 - 55$	_			iningery.						
315 - 30 $310 - 35$ $305 - 40$ $300 - 45$ $295 - 50$ $290 - 55$	$ _{320}$ –	2.5								
310 - 35 + 40 + 300 - 45 + 50 + 50 + 55 + 50 + 55 + 55 + 55 +										
310 - 35 + 40 + 300 - 45 + 50 + 50 + 55 + 50 + 55 + 55 + 55 +	315 -	30								
305 - 40 $300 - 45$ $295 - 50$ $290 - 55$										
305 - 40 $300 - 45$ $295 - 50$ $290 - 55$	$ _{310}$ -	35								
$\begin{array}{c} 300 \\ \hline \\ 1 \\ 295 \\ \hline \\ 290 \\ \hline \\ 1 \\ 290 \\ \hline \\ 1 \\ 55 \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		_ 50								
$\begin{array}{c} 300 \\ \hline \\ 1 \\ 295 \\ \hline \\ 290 \\ \hline \\ 1 \\ 290 \\ \hline \\ 1 \\ 55 \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	305 -	40								
$\begin{array}{c} 295 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $										
$\begin{array}{c} 295 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	300 =	45								
	295 -	50								
	290 -	55								
	285 -	60								

-8

State	tate Tennessee		Latitude <u>35.40961</u> ^o Longitude <u>89.38994</u> ^o						
Count	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>342</u>	ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	10/9/201	<u>10</u> Co	ompleted	10/9/201	0
Driller	R. C	assell	Logged by B. Williams	Depth to Water	: Immedia	te			
Hole N	Jumber	B-36	Total Depth <u>15 ft</u>	Depth to Water	:	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
342.0 ft	0		Ground Line						
340	-		Topsoil Brownish tan, lean clay.	0,7		2.0			
	5				MC-1	4.0			MC
335			Dark brown, lean clay.	6.0					
_	10				MC-2	8.0			MC
330			Brown & red, clayey sand.	11.5		10.0			
	-		Brown & red, clayey sand.		MC-3	13.0			MC
325	15	<u>80003000000000000000000000000000000000</u>	No Refusal & Boring Terminated @ 15.0	(Elev. 327.0).	, WIC-5	15.0			IVIC
323	-		Boring elevation estimated from Google	Earth satellite					
	20		imagery.						
320	-								
-	_ 25								
315									
	30								
310	-								
-	35								
305	-								
-	40								
300									
	45								
295	<i>J</i>								
_									
290	50								
	1								
	55								
285	4								
	60								

-8

		-		Location					
-			Farm Information & Welcome Center	Surface Elevati					
-			rface Investigation	Dated Started			-		
			Logged by <u>B. Williams</u> Total Depth <u>15 ft</u>	_					
	Nulliber	D-J /						u	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
344.0 ft	0		Ground Line						
			Topsoil Brownish tan, lean clay.	0,7	2	2.0			
340	5		brownish tan, tean eray.		MC-1 Bag #7	4.0			MC/Bag
-			Dark brown, lean clay.	6.0					
335			Dank oro wil, fean orag.		MC-2	8.0			MC/Bag
	1 10			11.5	Bag #8	10.0			WIC/Dag
330	-		Brownish red, lean clay with sand.			13.0			
	15		No Refusal & Boring Terminated @ 15.0	(Elev. 329.0).	MC-3 Bag #9	15.0			MC/Bag
	-		Boring elevation estimated from Google						
325	<u> </u>		imagery.						
320									
	1 2.3								
315	-								
315	30								
-									
310	35								
-	_ 33								
305									
	40								
300	-								
	45								
	-								
295	_ 50								
-									
290	55								
_	-								
285	60								

8

State									
County	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>340</u>	ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	10/9/201	<u>10</u> Co	ompleted	10/9/201	10
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	lumber	B-38	Total Depth 15 ft	Depth to Water	r	Date	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
340 ^{40.0 ft}	0		Ground Line						
_			Brownish tan, lean clay.			2.0			
335	5				MC-1	4.0			MC
			Dark brown, lean clay.	6.0	<u>)'</u>				
330	10				MC-2	8.0			МС
	10			11.5		10.0			_
			Brownish red, lean clay with sand.		MC-3	13.0			МС
325	15		No Refusal & Boring Terminated @ 15.0)' (Elev. 325.0).		15.0			ivic
_			Boring elevation estimated from Google	Earth satellite					
320	20		imagery.						
_	-								
315	_ 25								
_									
310	30								
_									
305	35								
300	40								
=									
295	45								
=	•								
290	_ 50								
285	55								
200 -	60								
280	60	1			1	1	1	1	1

.....

State									
Count	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevat	ion <u>348</u>	ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	10/9/201	<u>10</u> Co	ompleted		10
Driller	R. C	assell	Logged byB. Williams	Depth to Water	r: Immedia	te			
Hole N	Jumber	B-39	Total Depth 15 ft	Depth to Water	r	Date	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
348.0 ft	0		Ground Line						
	-		Brownish tan, lean clay.			2.0			
345	_ 5				MC-1 Bag #10	4.0			MC/Bag
			Dark brown, lean clay.	6.0					
340	10				MC-2	8.0			MC/Bag
_	10		Brownish red, clayey sand.	11.5	Bag #11	10.0			inc, bug
335			Brownish red, clayey sand.		MC-3	13.0			MC/Bag
-	15		No Refusal & Boring Terminated @ 15.0	^{15.0} D' (Elev. 333.0).	Bag #12	15.0			MC/Bag
330			Boring elevation estimated from Google	Earth satellite					
_	_ 20		imagery.						
325									
	25								
320									
=	30								
315	-								
_	35								
310									
	40								
305	45								
=	- 45								
300									
	_ 50								
295	-								
	_ 55								
290	-								
	60								

.....

Sheet No. _1_ of _1_

State				Latitude <u>35.41071[°]</u> Longitude <u>89.38981[°]</u>					
County	<u>Hay</u>	ywood		Location					
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>332</u>	ft			
Project	t Type	Subsu	rface Investigation	Dated Started		<u>)10</u> Co	ompleted		010
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	lumber	B-40	Total Depth <u>15 ft</u>	Depth to Water	r	Date	e Measure	d	
	Litholog	y		Overburden	INO.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
332.0 ft	0		Ground Line						
330			Brown, lean clay.			2.0			
=	5				MC-1	4.0			MC
325	_ 5		Brown, lean clay.	6.0	<u>y</u>				
_	10				MC-2	8.0			MC
320	10			11.5		10.0			inc
			Brownish orange, lean clay with sand.		MC-3	13.0			MC
-	15		No Refusal & Boring Terminated @ 15.0	(Elev. 317.0).	WIC-5	15.0			MC
315			Boring elevation estimated from Google	Earth satellite					
_	_ 20		imagery.						
310									
=	25								
305									
=	30								
300									
	35								
295									
_	40								
290	_ 10								
=	15								
285	45								
280	50								
200									
	_ 55								
275									
	60								

-8

			Farm Information & Welcome Center						
-			rface Investigation						
			Logged by B. Williams		: Immedia	te	Î		
Hole N	Jumber	B-41	Total Depth 15 ft	Depth to Water	• 	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
329.0 ft	0		Ground Line						
_			Brown, lean clay.			2.0			
325	_ 5				MC-1 Bag #13	4.0			MC/Bag
320			Dark brown, lean clay.	6.0	<u> </u>				
320	10				MC-2	8.0			MC/Bag
315			Dark brown, lean clay with sand.	11.5	Bag #14	10.0			
315	15		Durk orown, roun only with suite.	15.0	MC-3	13.0			MC/Bag
310		****************	No Refusal & Boring Terminated @ 15.0	0' (Elev. 314.0).	Bag #15	15.0			
I —	20		Boring elevation estimated from Google imagery.	Earth satellite					
305	25								
300	30								
295	35								
290	40								
285	45								
280	50								
275	55								
270	60								

.....

State	Tenne	essee		Latitude <u>35</u> .	41026 ^o	Lon	gitude	<mark>89.38807</mark> ⁰	
				Location					
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>329</u>	ft			
Project	t Type	Subsu	rface Investigation	Dated Started	10/10/20	<u>010</u> Co	ompleted	10/10/20)10
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	lumber	B-42	Total Depth 15 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
329.0 ft	0		Ground Line						
=			Brownish tan, lean clay.			2.0			
325	_ 5				MC-1	4.0			MC
			Brown, lean clay.	6.0	<u>)'</u>				
320	10				MC-2	8.0			МС
_				11.5		10.0			_
315	1.5		Brown, lean clay with sand.		MC-3	13.0			МС
=	15		No Refusal & Boring Terminated @ 15.0	^{15.0} (Elev. 314.0).		15.0			inc
310	20		Boring elevation estimated from Google imagery.	Earth satellite					
=									
305	25								
=									
300	30								
=									
295	35								
_									
290	40								
285	45								
-	- +5								
280	50								
=	_ 50								
275									
=	55								
270	60								
					i.				

State	Tenne	essee		Latitude <u>35.</u>	41015 ⁰	Lon	gitude	<mark>89.38883</mark> ⁰	
-	-			Location					
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>339</u>	ft			
			rface Investigation	Dated Started			-		
			Logged by B. Williams	-					
Hole N	lumber	<u>B-43</u>	Total Depth 15 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
339.0 ft	0		Ground Line						
=			Brownish tan, lean clay.			2.0			
335	_ 5			5.0	MC-1 Bag #16	4.0			MC/Bag
			Reddish brown, lean clay.		MC-2	6.0			MC/Bag
330	10				Bag #17	8.0			MC/Dag
			Brown, lean clay with sand.	10.5					
325	_ 15			15.0	MC-3	13.0			MC/Bag
=	_ 15		No Refusal & Boring Terminated @ 15.0	(Elev. 324.0).	Bag #18	15.0			
320	_ 20		Boring elevation estimated from Google I imagery.	Earth satellite					
315	25								
310									
	30								
305	_ 35								
300	40								
295									
	_ 45								
290	_ 50								
285	_ 55								
280	60								

.....

State	Tenno	essee		Latitude <u>35.</u>					
		-		Location					
-			Farm Information & Welcome Center	Surface Elevati					
			rface Investigation	Dated Started			-		
			Logged by B. Williams	-					
Hole N	lumber	<u>B-44</u>	Total Depth 15 ft	Depth to Water		Date	e Measure	d	
1	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
341.0 ft	0		Ground Line						
340			Brownish tan, lean clay.		MC-1	0.7			MC
335	_ 5			5.1		4.0			MC
335			Dark brown, lean clay.		MC-2	6.1			MC
330	10			10.0		8.0			IVIC
330			Brown, lean clay with sand.	10.0		12.0			
325	15				MC-3				MC
325	15	<u>KOULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU</u>	No Refusal & Boring Terminated @ 15.0	(Elev. 326.0).	•	15.0			
323	20		Boring elevation estimated from Google imagery.	Earth satellite					
	25								
315 310	30								
305	35								
300	40								
295	45								
290	50								
285	_ 55								
	60								

.....

State	Tenne	essee		Latitude <u>35</u> .	.40918 ⁰	Lon	gitude	<mark>89.38856</mark> ⁰	
County	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>348</u>	ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	10/10/20	<u>)10</u> Co	ompleted	10/10/2	010
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	Jumber	B-45	Total Depth15 ft	Depth to Water	r	Date	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
348.0 ft	0		Ground Line						
			Brownish tan, lean clay.		MC-1	0.7			
345	_ 5		Dark brown, lean clay.	3.9	Bag #19	3.9			MC/Bag
			Durk orown, rour orag.		MC-2 Bag #20	7.0			MC/Bag
340	10		Brownish orange, clayey sand.	9.0		7.0			
-	10		Brownish orange, clayey sand.			11.0			
335					MC-3				MC/Bag
_	15	<u> (085) 1408)</u>	No Refusal & Boring Terminated @ 15.0	^{15.0} O' (Elev. 333.0).	Bag #21	15.0			
330	-		Boring elevation estimated from Google	Earth satellite					
	20		imagery.						
325									
	_ 25								
320									
=	30								
315									
_	35								
310									
	40								
305	-								
	45								
200 -									
300	_ 50								
295	5.5								
_	55								
290									
L	60								

.....

				Latitude <u>35.</u>					
				Location					
			Farm Information & Welcome Center	Surface Elevati					
-			rface Investigation	Dated Started			-		
			Logged by <u>B. Williams</u> Total Depth <u>15 ft</u>	-					
	number	D-40		Depth to Water				u	
1	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
351.0 ft	0		Ground Line						
350			Brownish tan, lean clay.		MC-1	0.7			MC
	_ 5		Dark brown, lean clay.	3.9		3.9			MC
345						6.2			MC
340	10		Brownish orange, lean clay with sand.	9.1					
-						12.0			
335	15		No Refusal & Boring Terminated @ 15.0	15.0	MC-3	15.0			MC
330	20		Boring elevation estimated from Google I imagery.	Earth satellite					
325	25								
320	30								
=									
315	35								
=									
310	40								
305	45								
	50								
300	50								
	55								
295	_ 55								
	60								

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenne	essee		Latitude <u>35</u> .	40715 ⁰	Lon	gitude	89.38885 ⁰	
County	/ <u>Ha</u>			Location 22					
			Farm Information & Welcome Center	Surface Elevati	ion <u>342</u>	.3 ft			
Project	t Type	Subsur	face Investigation	Dated Started	10/11/20	<u>010</u> Co	ompleted	10/11/20)10
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	lumber	B-47	Total Depth 42 ft	Depth to Water	·	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
342.3 ft	0		Ground Line						
340			Brown & brownish red, lean clay.			2.5			
	_ 5				SS-1	2.5 4.0 5.0		4-5-6	SPT
335	_ 5				SS-2	5.0 6.5		4-5-8	SPT
	10		Brownish gray, lean clay.	8.3					
330	_ 10				SS-3	10.0 11.5		3-4-6	SPT
			Light gray & tan, sandy lean clay.	13.3	-				
	_ 15				ST-1	15.0			ST
325				18.5		17.0			
	_ 20		Beige, yellowish orange & gray, lean clay	with sand.	ST-2	20.0			ST
320					512	22.0			51
	_ 25				SS-4	25.0		4-4-8	SPT
315				28.3		26.5		4-4-0	511
	_ 30		Gray, lean clay with sand.		SS-5	30.0		226	ODT
310					33-3	31.5		3-3-6	SPT
	_ 35					35.0			
305					SS-6	36.5		2-3-6	SPT
	_ 40					40.0			
300			No Refusal & Boring Terminated @ 42.0	$\frac{42.0}{1}$	ST-3	42.0			ST
	45		The refusal α being refinitiated (ω 42.0	(Elev. 300.3).					
295									
	_ 50								
290	_ 50								
	_ 55								
285									
	60								

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenne	essee		Latitude <u>35</u> .	40806 ⁰	Lon	gitude	89.38731 ⁰	
County	/ Ha	ywood		Location <u>34</u>					
Project	t Name	Solar 1	Farm Information & Welcome Center	Surface Elevati	ion <u>361</u>	.2 ft			
Project	t Type	Subsur	face Investigation	Dated Started		<u>010</u> Co	ompleted		10
Driller	R. C	assell	Logged by A. Bridges	Depth to Water	: Immedia	te			
Hole N	lumber	B-49	Total Depth 36.5 ft	Depth to Water		Date	e Measure	d	
I	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
361.2 ft	0		Ground Line						
360 <u> </u>	5		Brown, lean clay.		SS-1 SS-2	2.5 4.0 5.0 6.5		7-11-12 8-7-10	SPT SPT
350	10			13.3	SS-3	10.0 11.5		5-6-9	SPT
345	_ 15		Brown & gray, lean clay with sand.		SS-4	15.0 16.5		6-7-11	SPT
340	20				SS-5	20.0 21.5		5-6-8	SPT
335	_ 25				SS-6	25.0 26.5		4-5-8	SPT
330	30			33.3	SS-7	30.0 31.5		11-12-12	SPT
325	35		Gray & orange, lean clay with sand. No Refusal & Boring Terminated @ 36.5	(Elev. 324.7).	SS-8	35.0 36.5		7-9-18	SPT
320	40								
315	45								
310	50								
305	55								
	60								

.....

CONSULTING ENGINEERS

Sheet No. _1_ of _1_

State	Tenno	essee		Latitude <u>35.</u>	40489 ⁰	Lon	gitude	89.39057 ⁰			
County	y <u>Ha</u>	ywood		Location <u>41</u>	+50	88' Rt. Ra	amp C				
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>355</u>	.9 ft					
Projec	t Type	Subsu	rface Investigation	Dated Started	11/8/201	<u>0</u> Co	ompleted	11/8/201	0		
		-	Logged by B. Williams	-							
Hole N	Jumber	<u>B-51</u>	Total Depth 26 ft	Depth to Water	ſ	Date	e Measure	d			
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
355.9 ft	0		Ground Line		-						
355	-		Brown, lean clay.								
350	_ 5				SS-1	5.1 6.6		10-12-14	SPT		
=	10		Brown, black, red & reddish orange, silty	sand.		10.1					
345					SS-2	10.1 10:4 11.9	0.0	9-14-15	ST SPT		
340	15				SS-3	15.4 16.9		6-10-10	SPT		
335	20				ST-2	20.4	2.0		ST		
330	25		Reddish orange, poorly graded sand with	26.0	ST-3	22.4 24.0 26.0	1.3		ST		
	30		No Refusal & Boring Terminated @ 26.0	' (Elev. 329.9).		20.0					
325	-										
320	35										
315	40										
-	-										
310	45										
305	_ 50										
300	55										
	60										

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenne	essee		Latitude <u>35</u> .	40624 ^o	Lon	gitude	89.38783 ⁰	
County	<u>Ha</u>	ywood		Location <u>52</u>	+00	35' Lt. Ra	amp C		
Project	t Name	Solar 1	Farm Information & Welcome Center	Surface Elevati	ion <u>341</u>	.6 ft			
Project	t Type	Subsur	face Investigation	Dated Started	10/20/20	<u>)10</u> Co	ompleted	10/20/20)10
Driller	S. G	ow <u>er</u>	Logged by S. Gower	Depth to Water	r: Immedia	te			
Hole N	lumber	B-52	Total Depth51.5 ft	Depth to Water	r	Date	e Measure	d	
I	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
341.6 ft	0		Ground Line						
340			∖Topsoil Tan, brown & gray, lean clay.	0,5					
	_ 5		run, ere vin ee grug, reun erug.			5.0			
335					SS-1	6.5		3-3-3	SPT
	10					10.0			
330					SS-2	11.5		3-6-6	SPT
	15		Tan, brown & orange, sandy lean clay.	13.3		15.0			
325					SS-3	16.5		4-6-8	SPT
	20					20.0			
320					SS-4	20.0		4-6-8	SPT
	25					25.0			
315					SS-5	25.0 26.5		4-5-7	SPT
	30					20.0			
310					SS-6	30.0 31.5		7-10-14	SPT
	35		Tan & orange, silty sand.	33.3	-				
305					SS-7	35.0 36.5		7-12-13	SPT
	40								
300	<u> </u>				SS-8	40.0 41.5		9-12-12	SPT
	45								
295	45				SS-9	45.0 46.5		5-7-8	SPT
290	_ 50			51.5	SS-10	50.0 51.5		4-6-9	SPT
			No Refusal & Boring Terminated @ 51.5	(Elev. 290.1).		01.0			
285	55								
<u> </u>	60								

CONSULTING ENGINEERS

Sheet No. _____ of ____

State	Tenno	essee		Latitude <u>35</u> .	.40626 ⁰	Lon	gitude	89.38739 ⁰	
Count	y <u>Ha</u>	ywood		Location <u>61</u>	+50	30' Rt. Ra	amp D		
Projec	t Name	<u>Solar</u>	Farm Information & Welcome Center	Surface Elevat	ion <u>346</u>	5.6 ft			
Projec	t Type	Subsur	face Investigation	Dated Started	10/20/20	<u>010</u> Co	ompleted	10/20/20	10
Driller	R. C	assell	Logged by A. Bridges	Depth to Water	r: Immedia	te			
Hole N	Number	B-53	Total Depth35.5 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	у		Overburden	INO.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
346.6 ft	0		Ground Line						
345			Brown, lean clay.						
	5				SS-1 SS-2	2.5 4.0		6-6-6	SPT
340				7.3		5.5		7-7-14	SPT
=	10		Brown & tan, lean clay with sand.	/		9.0			
335					SS-3	10.5		16-21-28	SPT
_	-					14.0			
330	15				SS-4	15.5		14-17-18	SPT
	-		Orange, gray & tan, sandy lean clay.	17.3	57	19.0			
325	20				SS-5	20.5		11-12-23	SPT
	_ 25				SS-6	24.0 25.5		15-20-21	SPT
320	-		Orange & tan, silty sand.	27.3	<u>5'</u>				
	30				SS-7	29.0 30.5		8-9-11	SPT
315	-								
-	35			35.5	, SS-8	34.0 35.5		9-11-15	SPT
310	-		No Refusal & Boring Terminated @ 35	.5' (Elev. 311.1).		55.5			
	40								
305	-								
_	45								
300									
	50								
295	-								
	55								
290									
=	60								
	60					I	I	1	

CONSULTING ENGINEERS

State	Fennessee		Latitude <u>35</u> .	40656 ⁰	Lon	gitude	89.38 797 ⁰	
County _	Haywood		Location <u>8+</u>	-62	29' Lt. EE	B Access		
Project Na	ame <u>Solar</u>	Farm Information & Welcome Center	Surface Elevati	ion <u>342</u>	.4 ft			
Project Ty	pe <u>Subsur</u>	face Investigation	Dated Started	10/22/20	010 Co	ompleted	10/23/20	10
Driller	R. Cassell	Logged by A. Bridges	Depth to Water	: Immedia	te			
Hole Num	ber <u>B-55</u>	Total Depth 101 ft	Depth to Water	<u> </u>	Date	e Measure	d	
Lith	ology		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev. D	epth Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
342.4 ft ()	Ground Line						
340		Brown & white, lean clay.			2.5			
				SS-1	2.5 4:9		10-9-8	SPT
335				SS-2	6.0		11-11-14	SPT
	0	Brown, white, orange & gray, lean clay w	ith sand.	1	9.5			
	0			SS-3	11.0		7-11-15	SPT
	_							
	5			SS-4	14.5 16.0		4-6-9	SPT
325		Muticolor, gray & brown, sandy lean clay	17.8	1				
				ST-1	19.5	2.0		ST
320					21.5			
				SS-5	24.5		6-8-9	SPT
315			27.8	1	26.0			
	0	Orange, gray & pink, silty sand.		SS-6	29.5		15-40-50/0.4	SPT
310				55.0	30.9		15-40-50/0.4	511
	5			00.7	34.5			(D)T
305				SS-7	36.0		20-33-34	SPT
	0				39.5			
300				SS-8	41.0		13-22-25	SPT
	5				44.5			
	15			SS-9	44.5 46.0		10-15-19	SPT
295								
	0			SS-10	49.5 51.0		7-12-18	SPT
290		Orange, tan & red, well-graded sand with	silt.					
	5	<i></i>		SS-11	54.5 56.0		7-12-18	SPT
285					50.0			
	60				59.5			

State <u>Tennesse</u>	e			Latitude35	.40656 ⁰	Long	gitude	89.38 797 ⁰	
County <u>Haywo</u>	bod			Location 8-	+62	29' Lt. EE	B Access		
Project Name	Solar Farı	m Information & W	elcome Center	Surface Elevat	ion <u>342</u>	.4 ft			
Project Type	Subsurface	e Investigation		Dated Started	10/22/20	0 <u>10</u> Co	mpleted		10
Driller <u>R. Casse</u>	ell	Logged by	A. Bridges	Depth to Wate	r: Immedia	te			
Hole Number	B-55	Total Depth	101 ft	Depth to Wate	r	Date	e Measure	d	
Lithology				Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev. Depth Sy	mbol	Descrip	otion	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
282.4 ft60		Continued from p	previous page		SS-12	61.0		9-17-21	SPT
						64.5		8-10-14	SPT
						66.0 69.5			
270					SS-14	71.0		7-12-19	SPT
265 75					SS-15	74.5 76.0		4-9-12	SPT
80 260					SS-16	79.5 81.0		4-5-8	SPT
					SS-17	84.5 86.0		5-9-13	SPT
	000000 000000 000000 000000	n & orange, poorly g	graded sand.		SS-18	89.5 91.0		11-15-18	SPT
					SS-19	94.5		17-19-35	SPT
245 100						96.0 99.5			
	No	Refusal & Boring	Terminated @ 101.	0' (Elev. 241.4).	_{0'} SS-20	101.0		13-26-24	SPT
105 235									
230 110									
115									

CONSULTING ENGINEERS

State	Tenne	essee		Latitude <u>35</u> .	40665 ⁰	Lon	gitude	89.38782 ⁰	
County	y <u>Ha</u>	ywood		Location <u>8+</u>	-62	29' Rt. El	B Access		
Projec	t Name	<u>Solar l</u>	Farm Information & Welcome Center	Surface Elevati	ion <u>345</u>	5.4 ft			
Projec	t Type	Subsur	face Investigation	Dated Started	10/23/20	<u>)10</u> Co	ompleted		10
Driller	<u> </u>	ow <u>er</u>	Logged by <u>A. Bridges</u>	Depth to Water	: Immedia	te			
Hole N	Number	B-56	Total Depth 101 ft	Depth to Water		Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
345.4 ft	0		Ground Line						
340	5		Brown, lean clay.		SS-1 SS-2	2.5 4:9 6.0		12-17-19 14-18-22	SPT SPT
335	10		Brown, gray & orange, silty clay.	7.8	SS-3	9.5 11.0		13-15-18	SPT
330	15		Orange, lean clay with sand.	17.8	SS-4	14.5 16.0		4-4-5	SPT
325	20			22.5	ST-1	19.5 21.5	2.0		ST
320	25		Light gray, reddish orange & gray, silty, c	layey sand.	ST-2	24.5 26.5	2.0		ST
315	30		X . 1	32.8	SS-5	29.5 31.0		2-2-4	SPT
310	35		Light gray, silt with sand. Light gray, lean clay with sand.	37.8	ST-3	- 34.5 - 36.5	2.0		ST
305	40		White, yellow orange, orange & tan, poor	42.9	ST-4	39.5 41.5	2.0		ST
300	45		with silt.	Ty graded sand	ST-5	44.5 46.5	1.0		ST
295	50				SS-6	49.5 51.0		11-15-19	SPT
290	_ 55				SS-7	54.5 56.0		11-13-20	SPT
	60					59.5			

State	Tenn	essee		Latitude <u>35</u>	.40665 ⁰	Lon	gitude	89.38782 ^o	
Count	y <u>Ha</u>	ywood		Location <u>8</u> +	-62	29' Rt. El	B Access		
Projec	t Name	Solar]	Farm Information & Welcome Center	Surface Elevat	ion <u>345</u>	.4 ft			
Projec	t Type	Subsur	face Investigation	Dated Started	10/23/20	<u>)10</u> Co	ompleted	10/24/20	10
Driller	S. G	ower	Logged by A. Bridges	Depth to Wate	r: Immedia	te			
Hole N	Jumber	B-56	Total Depth101 ft	Depth to Wate	r	Dat	e Measure	d	
-	Litholog	у		Overburden	INO.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
285 ^{285.4} ft	60		Continued from previous page					0.16.20	ODT
					SS-8	61.0		9-16-20	SPT
280	65					64.5			(D)T
					SS-9	66.0		12-16-18	SPT
275	70					69.5			
2/3				50	SS-10	71.0		6-12-14	SPT
270	75		Orange & tan, well-graded sand with silt.	72.5		74.5			
2/0					SS-11	76.0		5-7-11	SPT
265	80					79.5			
205					SS-12	81.0		2-4-8	SPT
260	85					84.5			
260					SS-13	86.0		5-6-9	SPT
	90		Tan, orange & pink, poorly graded sand.		<u>3'</u>	89.5			
255					SS-14	91.0		25-42-42	SPT
-	05					94.5			
250	95				SS-15	94.3 96.0		3-9-16	SPT
-	100					00.5			
245	100	000000000000000000000000000000000000000	No Refusal & Boring Terminated @ 101.	$\frac{101.0}{0!}$ (Flev 244.4)	y SS-16	99.5 101.0		21-28-33	SPT
			To refuse a Doning Terminated in 101.	0 (Elev. 211.1).					
240	105								
-	-								
235	110								
	-								
230	115								
	120								

CONSULTING ENGINEERS

State	State Tennessee Latitude 35.40687 ^o Longitude 89.38824 ^o										
County	y <u>Hay</u> v	vood		Location 10	+00	25' Lt. EE	B Access				
Project	t Name	Solar l	Farm Information & Welcome Center	Surface Elevati	ion <u>344</u>	.9 ft					
Project	t Type _	Subsur	face Investigation	Dated Started	11/7/201	<u>10</u> Co	ompleted	11/7/201	0		
Driller	B. Cay	ton	Logged by <u>M. Quimby</u>	Depth to Water	r: Immedia	.te					
Hole N	Number _	B-57	Total Depth <u>101.4 ft</u>	Depth to Water	r	Date	e Measure	d			
	Lithology			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth S	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
344.9 ft	0		Ground Line								
=			Brown, lean clay.								
340					SS-1	4.9		2-4-5	SPT		
335						- 9.9 11.4		6-6-8	SPT		
330	15		Brown, gray & black, silty clay.	13.2	ST-1	14.9			CT.		
				19.2	SS-3	16.9 18.4	0.8	9-9-8	ST SPT		
325	20		Brown & gray, lean clay with sand.	23.2		19.9 21.4		3-4-5	SPT		
320	25		Light gray, brown, gray & red, silty, claye	y sand.	ST-2	24.9 26.9	2.0		ST		
315	30				SS-5	29.9 31.4		3-4-9	SPT		
310	35			38.5	<u>ST-3</u> SS-6	34.9 35.5 37.0	0.0	19-23-26	ST SPT		
305	40		Red & gray, silt with sand.		SS-7	39.9 41.4		7-12-23	SPT		
300	45		Brown, gray, dark red & red, poorly grade	$\frac{45.7}{\text{d sand with silt.}}$	SS-8	44.9 46.4		17-23-24	SPT		
295	_ 50					49.9 51.4		12-17-23	SPT		
290	55				SS-10	54.9 56.4		14-16-19	SPT		
285	60										

State	Tenne	essee		Latitude <u>35.</u>	40687 ⁰	Lon	gitude	89.38824 ^o	
Count	y <u>Ha</u>	ywood		Location <u>10</u>	+00	25' Lt. El	B Access		
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>344</u>	.9 ft			
Projec	t Type	Subsur	rface Investigation	Dated Started	11/7/201	<u>10</u> Co	ompleted	11/7/201	0
Driller	B. C:	ayton	Logged by M. Quimby	Depth to Water	: Immedia	te			
Hole N	Number	B-5 7	Total Depth101.4 ft	Depth to Water	·	Date	e Measure	d	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
284.9 ft	60		Continued from previous page			50.0			
-	-				SS-11	59.9 61.4		9-11-11	SPT
280	65				SS-12	64.9		0-5-7	SPT
				68.2		66.4		0-3-7	511
275	70		Red & gray, well-graded sand with silt.		SS-13	69.9		7-9-12	SPT
	-					71.4			
270	_ 75				SS-14	74.9 76.4		14-17-16	SPT
						/0.4			
265	80				SS-15	79.9 81.6		7-8-9	SPT
260	85								
					SS-16	84.9 86.4		9-12-16	SPT
255	90	000000000000000000000000000000000000000	Red & gray, poorly graded sand.	88.2		89.9			
		000000000000000000000000000000000000000			SS-17	91.4		21-26-26	SPT
250	95				SS-18	94.9		21.20.27	CDT
		000000000000000000000000000000000000000			55-16	96.4		21-28-37	SPT
245	_ 100				SS-19	99.9		23-41-41	SPT
	-	000000000	No Refusal & Boring Terminated @ 101.	4' (Elev. 243.5).	5515	101.4		23-41-41	51 1
240	105								
-									
235	_ 110								
	-								
230	_ 115								
	-								
225	120								

CONSULTING ENGINEERS

State Tennessee Latitude 35.40695 ° Longitude									
County	y <u>Ha</u>	ywood		Location 10	+00	25' Rt. EF	B Access		
Project	t Name	Solar l	Farm Information & Welcome Center	Surface Elevati	ion <u>345</u>	5.1 ft			
Project	t Type	Subsur	face Investigation	Dated Started	11/7/201	<u>10</u> Co	ompleted	11/7/201	0
Driller	D. H	ertter	Logged by <u>B. Williams</u>	Depth to Water	r: Immedia	te			
Hole N	Number	B-58	Total Depth99.3 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
343 ^{345.1 ft}	0		Ground Line						
			Brown, lean clay.						
340	_ 5				SS-1	2.7 4.3		13-25-25	SPT
			Brown & red, silty clay.	6.0	<u>,</u>				
335	10				SS-2	7.7 9.3		3-4-5	SPT
						2.0			
					SS-3	12.7 14.3		4-5-8	SPT
330	L 15		Light gray, brown & red, lean clay with sa	16.0	<u>,</u>	14.5			
-			Light gray, brown & red, real eray with sa	unu.	ST-1	17.7	2.0		ST
325	20					19.7	2.0		51
_	-				SS-4	22.7		2-4-7	SPT
320	_ 25				001	24.3		2-4-7	511
					00.5	27.7			(D)T
315	30			31.0	SS-5	29.3		6-7-9	SPT
			White & gray, sandy lean clay.			32.7			
310	_ 35				ST-2	34.7	1.8		ST
=						37.7			
305	40				SS-6	39.3		6-6-8	SPT
			Brown & gray, well-graded sand with silt.	. 41.0	<u>)'</u>				
300	45				SS-7	42.7 44.3		23-32-33	SPT
					SS-8	47.7 49.3		16-18-22	SPT
295	_ 50					-19.J			
-					SS-9	52.7		16-18-19	SPT
290	_ 55					54.3			
					SS-10	57.7		10-10-12	SPT
	60					59.3		10 10 12	511

State	State <u>Tennessee</u> Latitude <u>35.40695 °</u> Longitude <u>89.38811 °</u>										
County	/ <u>Hay</u>	ywood		Location 10	+00	25' Rt. El	B Access				
Project	Name	Solar	Farm Information & Welcome Center	Surface Elevat	ion <u>345</u>	5.1 ft					
Project	Туре	Subsu	rface Investigation	Dated Started	11/7/201	<u>10</u> Co	ompleted	11/7/201	0		
Driller	D. H	ertter	Logged by B. Williams	Depth to Wate	r: Immedia	te					
Hole N	lumber	B-58	Total Depth 99.3 ft	Depth to Water	r	Date	e Measure	ed			
Ι	Litholog	y		Overburden	10.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
28 3 85.1 ft	60		Continued from previous page		_						
280	_ 65				SS-11	62.7 64.3		13-17-18	SPT		
275	_ 70				SS-12	67.7 69.3		16-17-10	SPT		
270	75				SS-13	72.7 74.3		3-6-12	SPT		
265	_ 80				SS-14	77.7 79.3		3-9-12	SPT		
260	_ 85	000000000	Gray, poorly graded sand.	86.0	SS-15	82.7 84.3		7-8-11	SPT		
255	_ 90		Gluy, poorty graded suite.		SS-16	87.7 89.3		10-7-11	SPT		
250	_ 95				SS-17	92.7 94.3		10-10-10	SPT		
245	_ 100	000000000000000000000000000000000000000	No Refusal & Boring Terminated @ 99	.3' (Elev. 245.8).	ss-18	97.7 99.3		22-18-24	SPT		
240	_ 105										
235	_ 110										
230	_ 115										
	120										

State Tennessee Latitude 35.40723 ° Longitude 89.38859 °									
County <u>Haywood</u>		Location 11	+67	29' Lt. EE	B Access				
Project Name <u>Solar Farm Informa</u>	tion & Welcome Center	Surface Elevati	ion <u>346</u>	.8 ft					
Project Type <u>Subsurface Investiga</u>	tion	Dated Started	11/5/201	<u>10</u> Co	ompleted	11/5/201	0		
Driller <u>B. Cayton</u> Logg	ed by <u>M. Quimby</u>	Depth to Water	r: Immedia	te					
Hole Number <u>B-59</u> Total	Depth <u>100.6 ft</u>	Depth to Water	r	Date	e Measure	d			
Lithology		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev. Depth Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
346.8 ft 0	Ground Line								
345 Brown, lean of	clay.								
			SS-1	4.1 5.6		5-6-8	SPT		
				0.0					
			SS-2	9.1 10.6		2-3-5	SPT		
Gray, lean cla	ay with sand.	12.4	Ľ	14.1					
			SS-3	14.1 15.6		2-3-6	SPT		
				19.1					
325			ST-1	21.1	2.0		ST		
25			SS-4	24.1		2-3-3	SPT		
	anna an da laan alaa	27.4	r	25.6					
= 30	gray, sandy lean clay.		ST-2	29.1	2.0		ST		
			512	31.1	2.0		51		
			SS-5	34.1		6-7-8	SPT		
				35.6					
			SS-6	39.1 40.6		7-10-17	SPT		
305 Red & brown	, poorly graded sand with sil	42.4	F	40.0					
45	, poorty graded sand with sh		SS-7	44.1 45.6		13-21-23	SPT		
				+3.0					
50			SS-8	49.1 50.6		13-15-9	SPT		
			SS-9	54.1 55.6		14-22-25	SPT		
				50.1					
				59.1					

Sheet No. _ 2_ of _ 2_

State	Tenne	essee		Latitude <u>35.</u>	40723 ^o	Lon	gitude	89.38859 ⁰	
County	y <u>Ha</u>	ywood		Location 11	+67	29' Lt. El	B Access		
Project	t Name	<u>Solar</u>	Farm Information & Welcome Center	Surface Elevati	on <u>346</u>	.8 ft			
Project	t Type	Subsu	face Investigation	Dated Started	11/5/201	<u>0</u> Co	ompleted	11/5/201	0
		-	Logged by M. Quimby	Depth to Water	:: Immedia	te			
Hole N	Number	B-59	Total Depth100.6 ft	Depth to Water	·	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
286.8 ft	60		Continued from previous page					10 10 10	ODT
285						60.6		10-10-10	SPT
	65				SS-11	64.1		5-7-10	SPT
280				67.4		65.6		5-7-10	51 1
_	70		Red, brown & gray, well-graded sand wit	h silt.	SS-12	69.1		0-2-5	SPT
275					0012	70.6		0-2-3	511
	_ 75				SS-13	74.1 75.6		7-11-15	SPT
270						75.0			
	_ 80				SS-14	79.1 80.6		15-17-37	SPT
265									
	85				SS-15	84.1 85.6		17-14-9	SPT
260									
	90				SS-16	89.1 90.6		15-24-25	SPT
255			Red & gray, poorly graded sand.	92.4					
	95				SS-17	94.1 95.6		15-17-21	SPT
250									
_	_ 100	000000000000000000000000000000000000000		100.6	SS-18	99.1 100.6		22-34-50	SPT
245	-		No Refusal & Boring Terminated @ 100.	6' (Elev. 246.2).					
_	_ 105								
240									
_	_ 110								
235									
	_ 115								
230									
	120								

State	State <u>Tennessee</u> Latitude <u>35.40731 °</u> Longitude <u>89.38842 °</u>										
County	/ <u>Ha</u>	ywood		Location 11	+60	29' Rt. EF	B Access				
Project	t Name	Solar 1	Farm Information & Welcome Center	Surface Elevat	ion <u>346</u>	.4 ft					
Project	t Type	Subsur	face Investigation	Dated Started	11/4/201	<u>10</u> Co	ompleted	11/4/201	0		
Driller	B. C:	ayton	Logged by B. Williams	Depth to Water	r: Immedia	te					
Hole N	lumber	B-60	Total Depth100.5 ft	Depth to Water	r	Date	e Measure	d			
I	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
346.4 ft	0		Ground Line								
345			Brown, lean clay.								
340	5				SS-1	4.0 5.5		15-16-17	SPT		
335	10				SS-2	9.0 10.5		6-8-10	SPT		
				13.3	57						
330	_ 15		Brown & red, silty sand.		ST-1 SS-3	14.0 16.0 17.5	0.0	2-2-3	ST SPT		
325	20		Red, white, gray & light gray, lean clay w	ith sand.	ST-2 SS-4	19.0 21.0	0.0	2-3-4	ST SPT		
320	_ 25				SS-5	22.5 24.0 25.5		2-4-5	SPT		
315	30				ST-3	29.0 31.0	2.0		ST		
310	35				SS-6	34.0 35.5		2-3-5	SPT		
305	40		White, gray, reddish orange & red, sandy,	silty clay.	ST-4	39.0 40.2	1.2		ST		
300	45				SS-7	44.0 45.5		7-12-17	SPT		
295	50				SS-8	49.0 50.5		9-8-10	SPT		
290	55			57.3	SS-9	54.0 55.5		9-14-21	SPT		
	60		Red & gray, well-graded sand with silt.			59.0					

State	Tenne	essee		Latitude <u>35</u> .	40731 ^o	Lon	gitude	89.38842 ^o	
County	y <u>Ha</u>	ywood		Location <u>11</u>	+60	29' Rt. El	B Access		
-			Farm Information & Welcome Center	Surface Elevati					
			rface Investigation	Dated Started			-		
		-	Logged by B. Williams	-					
Hole N	lumber	<u>B-60</u>	Total Depth100.5 ft	Depth to Water	r	Date	e Measure	d	
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
286.4 ft	60		Continued from previous page			60.5		17-22-24	SPT
280	65				SS-11	64.0 65.5		16-18-20	SPT
275	70				SS-12	69.0 70.5		6-17-19	SPT
270	75				SS-13	74.0 75.5		15-20-32	SPT
265	80				SS-14	79.0 80.5		9-10-16	SPT
260	85				SS-15	84.0 85.5		9-17-21	SPT
255	90	00000000	Crow & red months graded age d	92.3	SS-16	89.0 90.5		13-18-20	SPT
250	95		Gray & red, poorly graded sand.		SS-17	94.0 95.5		12-22-23	SPT
245	100	000000000000000000000000000000000000000	No Refusal & Boring Terminated @ 100	.5' (Elev. 245.9).	, SS-18	99.0 100.5		12-33-27	SPT
240	105								
235	110								
230	115								
	120								

County Haywood Location Project Name Solar Farm Information & Welcome Center Sufface Elevation 345 rt Image: Completed 109/2010 Project Type Subsurface Investigation Dated Started 109/2010 Completed 109/2010 Bolice Elev. Degth Symbol O O Rock Core No. Run Rec. RCC RCD 344 4.8 0 Ground Line SS-1 2.0 SS-1 3.4 SPT 340 - 5 Ground Line 2.0 SS-1 3.4 SPT 330 - 5 Ground Line 2.0 SS-1 3.4 SPT 330 - 15 Brown & gray, sandy lean clay 1.0 SS-1 11.2 2.0 2.0 SPT 330 - 15 Gray, lean clay with sand 2.0 SS-1 12.2 2.0 2.0 SPT 331 - 10 Gray, lean clay with sand 2.0 SS-1 12.2 2.0 2.0 SPT 332 - <td< th=""><th></th><th></th><th>Latitude <u>35.</u></th><th></th><th></th><th></th><th></th><th></th></td<>			Latitude <u>35.</u>					
Project Type Subsurface Investigation Dated Started 109/201 Complet 109/201 Hole I.orged by D. Hertter Depth to Water Immediate Depth Rec. Rec. RCOP RCOP RCOP Rec. RCOP								
Driller S. Gower Logged by D. Herter Depth to Water Immediate								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						•		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-					
$ \begin{array}{ c c c c c } \hline \text{Libelogy} \\ \hline \text{Elev} & \text{Depth} & \text{Symbol} & \underline{\text{Description}} & \overline{\text{Rock Core}} & \overline{\text{No.}} & \overline{\text{Rem}} & \overline{\text{Rec}} & \overline{\text{Rec}} & \overline{\text{Rec}} & \overline{\text{Rec}} & \overline{\text{Rybol}} \\ \hline \text{Add} & \underline{\text{Add}} & \underline{\text{Brown & gray, lean clay.}} & \text{Brown & gra$	Hole Number <u>B-61</u>	Total Depth 61.2 ft	Depth to Water	r	Date	e Measure	d	
Here. Deptin Symbol Description Ref CCCCe No. Run (ft.) (%) (%) $344^{450.0}$ 0 Ground Line 2.0 34.44 SPT 340^{-1} 5 Brown & gray, lean clay. 35^{+1} 35^{+1} 35^{+1} 35^{+1} 325^{+1} $346^{+5.0}$ 344^{+5} SPT 330^{-1} 5 Brown & gray, sandy lean clay. 35^{+1} 35^{+1} 35^{+1} 36^{+1} 346^{+1} SPT 330^{-1} 15 Brown & gray, sandy lean clay. 35^{+1} 35^{+1} 36^{+1} </td <td>Lithology</td> <td></td> <td>Overburden</td> <td>No.</td> <td>Depth</td> <td>(ft.)</td> <td></td> <td></td>	Lithology		Overburden	No.	Depth	(ft.)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elev. Depth Symbol	Description	Rock Core		Run			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	343 ^{45.0 ft} 0							
335 10 10 10 10 10 10 112 23.5 SPT 330 15 Brown & gray, sandy lean clay. 100 11.0		Brown & gray, lean clay.			2.0			
335 10 10 10 10 10 10 10 10 10 112 2.3.5 SPT 330 15 Brown & gray, sandy lean clay. 100 11.0	$\begin{vmatrix} 340 \end{vmatrix} = 5$			SS-1	3.5		3-4-4	SPT
330 15 Brown & gray, sandy lean clay. 112 2-3-5 SP1 325 20 58-4 16.2 2-10.4 SPT 325 20 58-5 19.7 21.2 2-3-5 SPT 320 25 Gray, lean clay with sand. 58-6 24.7 2-2-3 SPT 315 30 Gray, lean clay with sand. 58-6 24.7 2-2-3 SPT 315 30 Gray, lean clay with sand. 58-6 24.7 2-2-3 SPT 315 30 Gray, lean clay with sand. 58-6 24.7 2-2-3 SPT 310 35 Gray, sandy lean clay. 330 34.7 34.7 SPT 300 440 58-8 36.2 3-4.7 SPT 300 45 S8-10 44.7 4-6-8 SPT 295 50 S8-10 55.10 44.7 4-0-13 SPT 290 55 S5 S5 S8-12 54.7 10-13-16 SPT				SS-2			3-4-6	SPT
330 15 Brown & gray, sandy lean clay. 112 2.3-5 SP1 325 20 55 14.7 16.2 2.10.4 SPT 325 20 55 6ray, lean clay with sand. 55.4 16.2 2.3-5 SPT 320 25 6ray, lean clay with sand. 58.6 24.7 2.2-3 SPT 315 30 6ray, lean clay with sand. 58.6 24.7 2.2-3 SPT 315 30 6ray, lean clay with sand. 58.6 24.7 2.2-3 SPT 316 30 6ray, sandy lean clay. 33.0 33.0 34.7 34.7 SPT 310 35 6ray, sandy lean clay. 33.0 34.7 36.2 3-4.7 SPT 300 440 85.9 39.7 41.2 2.5.7 SPT 300 45 55 55 54.7 10-13-16 SPT 290 55 55 54.7 10-13-16 SPT								
330 15 Brown & gray, sandy lean clay. 130 147 2-10.4 SPT 325 20 58-5 19.7 2.3-5 SPT 320 25 Gray, lean clay with sand. 210 24.7 2.2-3 SPT 315 30 Gray, lean clay with sand. 310 <t< td=""><td></td><td></td><td></td><td>SS-3</td><td></td><td></td><td>2-3-5</td><td>SPT</td></t<>				SS-3			2-3-5	SPT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Brown & gray, sandy lean clay.	13.0	<u>r</u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				SS-4			2-10-4	SPT
320 25 Gray, lean clay with sand. 210 24.7 2-3.3 SPT 315 30 Gray, lean clay with sand. 280 29.7 31.2 2.4.5 SPT 310 35 Gray, sandy lean clay. 33.0 33.0 33.0 34.7 SF.7 SF.7 </td <td></td> <td></td> <td></td> <td></td> <td>10.2</td> <td></td> <td></td> <td></td>					10.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2-3-5	SPT
320 25 22 2-2-3 SPT 315 30 Gray, lean clay with sand. 28.0 29.7 31.2 24.5 SPT 310 35 Gray, sandy lean clay. 33.0 34.7 34.7 SPT 300 40 SS-8 34.7 36.2 34.7 SPT 300 45 SS-9 41.2 2-5.7 SPT 300 45 SS-10 44.7 4-6.8 SPT 295 50 SS-11 51.2 4-9-13 SPT 290 55 SS-12 56.2 10-13-16 SPT			23.0		21.2		235	511
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	320 25	Gray, lean clay with sand.		55.6	24.7		2.2.2	ODT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			28.0		26.2		2-2-3	SPI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Gray, lean clay with sand.	20.0		29.7			
310 35 Gray, sandy lean clay. 34.7 34.7 SPT 305 40 39.7 39.7 2-5-7 SPT 300 45 50 44.7 4-6-8 SPT 295 50 55 SS-10 44.7 4-6-8 SPT 290 55 SS-11 51.2 4-9-13 SPT 290 55 SS-12 54.7 56.2 10-13-16 SPT							2-4-5	SPT
305 40 305 40 300 45 295 50 290 55 55 88-12 56.2 10-13-16 SPT	$\begin{vmatrix} 10 \\ 310 \end{vmatrix} = 35$	Gray, sandy lean clay.	33.0	<u>''</u>	247			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				SS-8			3-4-7	SPT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
300 - 45 $- 45$ $- 50$ $- 50$ $- 50$ $- 55$ $- 56.2$ $- 10-13-16$ $- 59T$				SS-9			2-5-7	SPT
295 50 290 55 55 55 55 55 55 55.12 55 56.2 10-13-16 SPT								
295 50 290 55 55 SS-12 55 SS-12 56.2 10-13-16				SS-10			4-6-8	SPT
290 55 55 SS-12 54.7 56.2 10-13-16 SPT					40.2			
290 <u>55</u> <u>54.7</u> <u>54.7</u> <u>56.2</u> 10-13-16 SPT							4-9-13	SPT
SS-12 56.2 10-13-16 SPT					51.2		1-2-13	511
	290 55			99.12	54.7		10.12.16	ODT
				55-12	56.2		10-13-16	SPT

Suite	Tenne				Latitude <u>35.</u>					
1	y <u>Ha</u>				Location					
-			Farm Information & Welcome (Surface Elevati					
			face Investigation		Dated Started			•		
			Logged by D. Hertt Dotal Depth 61.2 ft		Depth to Water Depth to Water					
	Number	D-01			Depui to water				u	
]	Litholog	y			Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description		Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
2838 <u>5.0 ft</u>	60		Continued from previous p	page		00.12	50.7			CDT
=			No Refusal & Boring Terminate	ed @ 61.2	(Elev. 283.8).	SS-13	59.7 61.2		4-8-13	SPT
280	65		Boring elevation estimated from	n Google I	Earth satellite					
			imagery.							
275	70									
270	75									
265	80									
_										
260	85									
255	90									
=										
250	95									
245	100									
245	100									
240	105									
=										
235	110									
230	115									
	120									
225	120	1				1		1	1	

Sheet No. <u>1</u> of <u>2</u>

State	Tenn	essee		Latitude <u>35</u> .	40934 ^o	Lon	gitude	89.38938 ⁰	
		-		Location					
Projec	t Name	<u>Solar l</u>	Farm Information & Welcome Center	Surface Elevati	ion <u>346</u>	ft			
Projec	t Type	Subsur	face Investigation	Dated Started	10/12/20	<u>)10</u> Co	ompleted	10/12/20	10
Driller	R. C	assell	Logged by B. Williams	Depth to Water	r: Immedia	te			
Hole N	lumber	B-62	Total Depth 61 ft	Depth to Water	r	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
346.0 ft	0		Ground Line						
345			Brown, lean clay.			2.5			
-	_ 5				SS-1	2.5 4:9		4-6-6	SPT
340					SS-2	6.0		3-4-6	SPT
335	10				SS-3	9.5 11.0		3-4-5	SPT
_			Light gray, lean clay with sand.	12.8					
330	15				SS-4	14.5 16.0		3-4-6	SPT
_			Brown, beige & yellowish orange, sandy	17.8		10.0			
325	20		Brown, beige & yenowish orange, sandy	lean clay.	SS-5	19.5		1-3-4	SPT
						21.0		151	511
_	25					24.5		246	CDT
320					SS-6	26.0		3-4-6	SPT
_	30				ST-1	28.5			ST
315	_ 50					30.5			51
_	25		Gray, lean clay with sand.	32.7	<u>"</u>	24.5			
310	35				SS-7	34.5 36.0		4-7-6	SPT
_			Brown, lean clay with sand.	37.3	<u>'</u>				
305	40				SS-8	39.5 41.0		3-5-8	SPT
_			Gray, sandy lean clay.	42.8	••				
300	45		Gruy, sundy fear only.		SS-9	44.5		7-9-14	SPT
						46.0			
205 -	_ 50				SS-10	48.5		10-12-19	SPT
295						51.0			
_	_ 55					54.5			e
290					SS-11	56.0		12-14-21	SPT
						59.5			
L	60					1 37.3	1		

Sheet No. <u>2</u> of <u>2</u>

State	Tenne			Latitude <u>35.</u>					
1	y <u>Ha</u>			Location					
-			Farm Information & Welcome Center	Surface Elevati					
			rface Investigation	Dated Started			•		
			Logged by <u>B. Williams</u> Total Depth <u>61 ft</u>	-					
	lumber	D-02			Sample	Dat	Rec.		
]	Litholog	y		Overburden	No.	Depth	(ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
286.0 ft	60		Continued from previous page		99.12			7 10 12	ODT
285			No Refusal & Boring Terminated @ 61.0	61.0 0' (Elev. 285.0).	SS-12	61.0		7-10-12	SPT
280	65		Boring elevation estimated from Google imagery.	Earth satellite					
275	70								
270	75								
265	80								
260	_ 85								
	90								
255									
250	95								
250									
245	100								
=									
240	105								
	110								
235									
230	115								
	120								
•	140								

.....

Sheet No. <u>1</u> of <u>2</u>

State	Tenn	essee		Latitude <u>35.</u>	.40935 ^o	Lon	gitude	89.38918 ⁰	
Count	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>347</u>	ft			
Projec	t Type	Subsu	rface Investigation	Dated Started	10/21/20	<u>010</u> Co	ompleted	10/21/20	010
Driller	R. C	assell	Logged by <u>A. Bridges</u>	Depth to Water	r: Immedia	te			
Hole N	Number	B-63	Total Depth61.5 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
347.0 ft	0		Ground Line						
345	-		Brown, lean clay.		SS-1	0.0		5-7-11	SPT
	5				SS-2	5.0		5-5-7	SPT
340	-			8.3		6.5		5-5-7	511
335	10		Brown, orange & gray, sandy lean clay.			10.0 11.5		4-6-7	SPT
330	15				SS-4	15.0 16.5		5-6-14	SPT
	20					20.0		2-3-3	SPT
325	-		Light gray, yellowish orange, gray & brow	23.3		21.5			
320	25		with sand.	wn, lean clay	ST-1	25.0 27.0			ST
215	30				SS-6	30.0 31.5		4-7-9	SPT
315	35		Brown & dark gray, lean clay with sand.	33.3					
310					ST-2	35.0 37.0			ST
305	40				SS-7	40.0 41.5		7-11-17	SPT
	45		Gray & dark gray, sandy lean clay.	43.3		45.0			
300					ST-3	47.0			ST
295	50				SS-8	50.0 51.5		7-9-16	SPT
	55					55.0		12-27-33	SPT
290						56.5		12-27-33	Sr I
	60								

Sheet No. <u>2</u> of <u>2</u>

State	Tenne								
-	y <u>Ha</u>			Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>347</u>	ft			
			face Investigation	Dated Started	10/21/20	<u>010</u> Co	ompleted	10/21/20	10
Driller	R. C	assell	Logged by A. Bridges	Depth to Water					
Hole N	Number	B-63	Total Depth61.5 ft	Depth to Water	·	Date	e Measure	d	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
287.0 ft	60		Continued from previous page			<i>c</i> a a			
285	-		No Refusal & Boring Terminated @ 61.5	61.5 ^{61.5}	SS-10	60.0 61.5		11-17-19	SPT
280	65		Boring elevation estimated from Google I imagery.	Earth satellite					
	70								
275	70								
270	75								
265	80								
260	85								
255	90								
250	95								
245	100								
240	105								
235	110								
	1 								
230	115								
L	120								

Sheet No. <u>1</u> of <u>2</u>

State	Tenn	essee		Latitude <u>35</u>	.40924 ^o	Lon	gitude	89.38917 ⁰	
County	/ <u>Ha</u>	ywood		Location					
Projec	t Name	Solar 1	Farm Information & Welcome Center	Surface Elevat	ion <u>348</u>	ft			
Projec	t Type	Subsur	face Investigation	Dated Started	10/11/20	<u>)10</u> Co	ompleted	10/12/20	10
Driller	R. C	assell	Logged by B. Williams	Depth to Wate	r: Immedia	te			
Hole N	lumber	B-64	Total Depth61.5 ft	Depth to Wate	r	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
348.0 ft	0		Ground Line						
345			Red & gray, lean clay.			2.5			
345 <u> </u>	_ 5				SS-1	2.5 4.0 5.0		6-7-8	SPT
_					SS-2	5.0 6.5		5-5-7	SPT
340	10		Red & gray, sandy lean clay.	8.3	57				
-					SS-3	10.0 11.5		5-4-5	SPT
335	1.5		Beige, tan, red & gray, lean clay with sand	<u>13.3</u>	<u>,,</u>				
=	15				ST-1	15.0			ST
330						17.0			
	20				SS-4	20.0		2-3-4	SPT
325			The large the second	23.3	57	21.5			
	_ 25		Light gray, lean clay with sand.		SS-5	25.0		5-8-10	SPT
320				28.3		26.5		5-0-10	51 1
_	30		Light gray & gray, sandy lean clay.		SS-6	30.0		470	SPT
315					33-0	31.5		4-7-9	5P 1
_	35				00.7	35.0		6.0.0	
310					SS-7	36.5		6-8-9	SPT
_	40					40.0			
305					SS-8	41.5		8-15-16	SPT
	45					45.0			
200 -					SS-9	46.5		8-10-13	SPT
300	_ 50					50.0			
					SS-10	50.0 51.5		7-11-16	SPT
295	55								
=	_ 55				SS-11	55.0 56.5		7-15-15	SPT
290									
L	60						I		

Sheet No. _2_ of _2_

State	Tenno			Latitude <u>35.</u>			-		
	/ <u>Ha</u>	-		Location					
-			Farm Information & Welcome Center	Surface Elevati					
			rface Investigation	Dated Started			-		
			Logged by <u>B. Williams</u> Total Depth <u>61.5 ft</u>	Depth to Water Depth to Water					
	unioei							u	
1	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
288.0 ft	60		Continued from previous page						
			No Refusal & Boring Terminated @ 61.5	61.5 (Elev. 286.5).	SS-12	60.0 61.5		8-11-15	SPT
	65		Boring elevation estimated from Google imagery.	Earth satellite					
280	-		inagery.						
	70								
275	75								
270									
	80								
265									
	85								
260	90								
255									
	95								
250									
	100								
245	105								
240									
	110								
235									
	_ 115								
230	120								

.....

Sheet No. <u>1</u> of <u>2</u>

State	Tenn	essee		Latitude <u>35</u> .	40913 ⁰	Lon	gitude	89.38917 ⁰	
County	/ <u>Ha</u>	ywood		Location					
Project	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>349</u>	ft			
Project	t Type	Subsur	rface Investigation	Dated Started	10/11/20	<u>010</u> Co	ompleted		010
Driller	S. G	ower	Logged by D. Hertter	Depth to Water	r: Immedia	te			
Hole N	lumber	B-65	Total Depth61.2 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
349.0 ft	0		Ground Line						
=			Brown & gray, lean clay.			2.0			
345	_ 5				SS-1	3.5 4.7		2-5-6	SPT
					SS-2	6.2		2-3-5	SPT
340	10					9.7			
-					SS-3	9.7		1-4-5	SPT
335	1.5		Brown & gray, sandy lean clay.	13.0	<u>v</u>				
=	15				SS-4	14.7 16.2		1-3-3	SPT
330			Gray, lean clay with sand.	18.0	<u>v</u>				
_	20				SS-5	19.7 21.2		1-3-5	SPT
325									
_	_ 25				SS-6	24.7 26.2		2-4-6	SPT
320						20.2			
	30				SS-7	29.7		2-6-10	SPT
215			Davla array eilty and	33.0	<u>r</u>	31.2			
315	35		Dark gray, silty sand.		ST-1	34.7			ST
				38.0		36.7			51
310	_ 40		Gray, sandy lean clay.		SS-8	39.7		4-8-10	SPT
_					33-0	41.2		4-8-10	511
305	45					44.7			~~~~
					SS-9	46.2		5-10-14	SPT
300	_ 50					49.7			
					SS-10	51.2		8-14-17	SPT
295	55					54.7			
					SS-11	56.2		7-15-21	SPT
290	60								
L					1	í	1	(

Sheet No. <u>2</u> of <u>2</u>

State	Tenne			Latitude <u>35.</u>					
-	y <u>Ha</u> y			Location					
-			Farm Information & Welcome Center	Surface Elevati					
			rface Investigation	Dated Started			-		
			Logged by <u>D. Hertter</u> Total Depth <u>61.2 ft</u>	Depth to Water Depth to Water					
	NUITIDEI	D-0 3						u	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
289.0 ft	60		Continued from previous page		00.12	50.7		10.10.10	CDT
=			No Refusal & Boring Terminated @ 61.2	61.2 (Elev. 287.8).	SS-12	59.7 61.2		10-13-18	SPT
285	65		Boring elevation estimated from Google I imagery.	Earth satellite					
280	70								
275	75								
270									
270	80								
265	85								
260	90								
255	05								
	95								
250	100								
245	105								
240	110								
	110								
235	_ 115								
230									
	120								

.....

Sheet No. <u>1</u> of <u>2</u>

State	Tenne	essee		Latitude <u>35.</u>	40912 ^o	Lon	gitude	89.38938 ⁰	
County	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar]	Farm Information & Welcome Center	Surface Elevati	on <u>348</u>	ft			
Project	t Type	Subsu	rface Investigation	Dated Started	10/11/20	<u>010</u> Co	mpleted	10/11/20	10
Driller	S. G	ow <u>er</u>	Logged by D. Hertter	Depth to Water	:: Immedia	te			
Hole N	Number	B-66	Total Depth 61.2 ft	Depth to Water	·	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
348.0 ft	0		Ground Line						
345	-		Brown, lean clay.		00.1	2.0			~~~~
	5				SS-1	3.5 4.7		3-5-6	SPT
340					SS-2	6.2		1-4-4	SPT
340	10					9.7			
_					SS-3	11.2		1-3-5	SPT
335	15		Gray & yellowish orange, lean clay with s	sand.		14.7			
-					SS-4	16.2		2-2-2	SPT
330	20								
	20		Gray & yellowish orange, sandy lean clay	20.3	ST-1	19.7 21.7			ST
325			Dark gray, silty sand.	22.8	-				
	25				SS-5	24.7 26.2		3-6-10	SPT
320									
=	30				SS-6	29.7 31.2		4-8-14	SPT
315									
	35				SS-7	34.7 36.2		4-8-16	SPT
310						50.2			
	40				SS-8	39.7 41.2		3-7-12	SPT
305	-					41.2			
=	45				SS-9	44.7		4-10-14	SPT
300						46.2			
=	_ 50				SS-10	49.7		6-11-24	SPT
295					-	51.2			U I I
=	55				SS-11	54.7		5-11-23	SPT
290						56.2		5-11-23	51 1
	60								

Sheet No. <u>2</u> of <u>2</u>

State	Tenne			Latitude <u>35.</u>					
-	y <u>Ha</u>	-		Location					
-			Farm Information & Welcome Center	Surface Elevati					
			rface Investigation	Dated Started			-		
			Logged by D. Hertter	Depth to Water					
Hole N	Number	<u> </u>	Total Depth ft	Depth to Water		Date		d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
288.0 ft	60		Continued from previous page		00.10	50.7			CDT
			No Refusal & Boring Terminated @ 61.2	(Elev. 286.8).	SS-12	59.7 61.2		4-7-14	SPT
	65		Boring elevation estimated from Google I	Earth satellite					
280			imagery.						
	70								
275									
	75								
270									
	80								
265									
=	85								
260	90								
	_ 90								
255	95								
250									
	100								
245									
	105								
240									
	110								
235	-								
	115								
230									
	120								

.....

Sheet No. <u>1</u> of <u>2</u>

				Latitude <u>35</u> .					
		-		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevation	ion <u>347</u>	' ft			
-			face Investigation	Dated Started			-		
			Logged by D. Hertter	-					
Hole N	Number	B-67	Total Depth61.3 ft	Depth to Water	r	Date	e Measure	d	
	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
347.0 ft	0		Ground Line						
345	-		Brown, lean clay.			2.0			
=	5				SS-1	3.5 4.8		5-6-6	SPT
340					SS-2	6.3		2-4-6	SPT
=	10		Brown & gray, sandy lean clay.	8.1		9.8			
335					SS-3	11.3		2-5-6	SPT
_	15								
330	15				SS-4	14.8 16.3		3-5-7	SPT
325	20				SS-5	19.8 21.3		1-3-4	SPT
						-1.0			
	25				SS-6	24.8 26.3		1-3-4	SPT
320	-		Gray, silty sand.	28.1		20.3			
	30		Oray, shiy sanu.		SS-7	29.8		2-4-5	SPT
315	-					31.3		_	
-	35				ST-1	34.8			ST
310					51-1	36.8			51
	40				SS-8	39.8		5-10-16	SPT
305					55-6	41.3		3-10-10	511
-	45				0.00	44.8			(D)T
300	-				SS-9	46.3		5-12-18	SPT
	50					49.8			
295	-				SS-10	51.3		5-6-11	SPT
	_ 55					54.8			
290	-				SS-11	56.3		3-8-11	SPT
=	60								
•							•	·	

.....

Sheet No. <u>2</u> of <u>2</u>

State	Tenne	essee		Latitude <u>35.</u>	40912 ^o	Lon	gitude	89.38959 ⁰	
Count	y <u>Ha</u>	ywood		Location					
Projec	t Name	Solar	Farm Information & Welcome Center	Surface Elevati	ion <u>347</u>	ft			
			rface Investigation	Dated Started	10/10/20	<u>10</u> Co	ompleted	10/10/20)10
			Logged by D. Hertter	Depth to Water					
Hole N	Number	B-67	Total Depth61.3 ft	Depth to Water	·	Date	e Measure	d	
]	Litholog	у		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)
287.0 ft	60		Continued from previous page		SS-12	59.8		4-9-14	SPT
285			No Refusal & Boring Terminated @ 61.3	(Elev. 285.7).	55-12	59.8 61.3		4-9-14	SPT
280	65		Boring elevation estimated from Google I imagery.	Earth satellite					
280	70								
275									
	75								
270	80								
265	00								
	85								
260									
255	90								
	95								
250									
245	100								
	105								
240									
235	110								
-	115								
230									
	120								

.....

Sheet No. <u>1</u> of <u>2</u>

State	Tenn	essee		Latitude <u>35.40923</u> ^o Longitude <u>89.38959</u> ^o							
-		-		Location							
-			Farm Information & Welcome Center	Surface Elevati							
	• •		face Investigation	-							
			Logged by D. Hertter	•							
Hole N	lumber	<u>B-68</u>	Total Depth 61 ft	Depth to Water Date Measured							
]	Litholog	y		Overburden	Sample No.	Depth	Rec. (ft.)	Blows	Туре		
Elev.	Depth	Symbol	Description	Rock Core	Core No.	Run	Rec (ft.)	Rec. (%)	RQD (%)		
347.0 ft	0		Ground Line								
345			Brown, lean clay.			2.0					
=	_ 5				SS-1	3.5 4.5		6-6-7	SPT		
340					SS-2	6.0		3-4-5	SPT		
	10			10.3		9.5					
335			Brown & gray, sandy lean clay.	10.3	ST-1	11.5			ST		
	15					14.5					
330					SS-3	16.0		3-4-6	SPT		
	20				66.4	19.5		100	ODT		
325				22.8	SS-4	21.0		4-9-9	SPT		
	25		Gray, lean clay with sand.	22.0		24.5		1.2.5	(D)T		
320					SS-5	26.0		1-3-5	SPT		
_	30					29.5					
315				32.4	ST-2	31.5			ST		
	35		Gray, silty sand.			34.5					
310					SS-7	36.0		4-6-8	SPT		
	40					39.5					
305					SS-8	41.0		4-6-9	SPT		
_	45					44.5					
300					SS-9	46.0		4-5-10	SPT		
	_ 50					49.5					
295					SS-10	51.0		5-8-11	SPT		
=	55					54.5					
290					SS-11	56.0		6-8-18	SPT		
	60					59.5					

Sheet No. <u>2</u> of <u>2</u>

County Haywood Location Project Name Solar Farm Information & Welcome Center Surface Elevation 347 ft Project Type Subsurface Investigation Dated Started 10/9/2010 Completed 10/9/2010 Driller S. Gower Logged by D. Hertter Depth to Water: Immediate
Project Type Subsurface Investigation Dated Started 10/9/2010 Completed 10/9/2010 Driller S. Gower Logged by D. Hertter Depth to Water: Immediate
Driller S. Gower Logged by D. Hertter Depth to Water: Immediate Hole Number B-68 Total Depth 61 ft Depth to Water Date Measured Lithology Overburden Sample No. Depth Rec. Blows Type Elev. Depth Symbol Description Rock Core Core No. Run Rec. RQD 287.0 ft 60 Continued from previous page 61.0 SS-12 61.0 5-10-16 SPT 285 No Refusal & Boring Terminated @ 61.0' (Elev. 286.0). 61.0 5-10-16 SPT 65 Boring elevation estimated from Google Earth satellite 61.0 61.0 61.0 5-10-16 SPT 280 70 70 No Refusal & from Google Earth satellite 61.0 61.0 61.0 61.0 61.0
Hole Number B-68 Total Depth 61 ft Depth to Water Date Measured Lithology Image: Continued from previous page Overburden Sample No. Depth Rec. (ft.) Blows Type Elev. Depth Symbol Description Rock Core No. Run Rec. (ft.) Blows Type 285
Lithology Overburden Sample No. Depth Rec. (ft.) Blows Type Elev. Depth Symbol Description Rock Core Core No. Run Rec. (ft.) Blows RQD (%) 287.0 ft 60 Continued from previous page 61.0 SS-12 61.0 5-10-16 SPT 285 65 Boring elevation estimated from Google Earth satellite imagery. 61.0 61.0 5-10-16 SPT
Lithology Overburden No. Depth Gr. Blows Type Elev. Depth Symbol Description Rock Core Core Run Rec. RQD 287.0 ft 60 Continued from previous page 61.0 SS-12 61.0 5-10-16 SPT 285 65 Boring elevation estimated from Google Earth satellite 61.0 SS-12 61.0 61.0 5-10-16 SPT
Elev.DepthSymbolDescriptionRock CoreNo.Run(ft.)(%)(%) 287.0 ft 60Continued from previous page 61.0° SS-12 61.0° $5-10-16$ SPT 285 $$ $$ 65 Boring elevation estimated from Google Earth satellite 61.0° $5-10-16$ SPT 280 $$ $$ 70 $$ $$ $$ $$ $$ $$
285
285 No Refusal & Boring Terminated @ 61.0' (Elev. 286.0). Boring elevation estimated from Google Earth satellite 280 70
280 70 imagery.
280 70 imagery.
270

Appendix V Laboratory Results

Location : Haywood County, Tennessee

Florence & Hutcheson

CONSULTING ENGINEERS

Project Name : Solar Farm Information & Welcome Center Site Design

Moisture Data

Soil	Boring	: 38001-1684-043800	Sample	.				Moisture Content
No.	No.	Station & Offset CONTROL BC	No.	De	epth	Description of Soil	pH	(%)
		RAMP A	T	1	1			
1	1 1	21+00 @ CL	MC-1	3.0	5.0	Brown Lean Clay		17.3
2		21100 @ CE	MC-2	8.0		Dark Brown Lean Clay		17.6
3			MC-3	13.0		Reddish Gray Lean Clay with Sand		19.2
5			MC-4	18.0	20.0	Gray Sandy Lean Clay		20.9
5			MC-5	23.0		Gray Sandy Lean Clay		22.3
5			MC-6	28.0	30.0	Gray Sandy Lean Clay		22.2
5			MC-7	34.0	36.0	Gray Sandy Lean Clay		22.0
2	2	25+00 @ 80' Rt.	MC-1	0.0	15.0	Brown Lean Clay		19.4
5		······································	MC-2	24.0	28.0	Gray Sandy Lean Clay		25.3
1	3	29+00 @ 43' Rt.	MC-1	0.5	5.0	Brown Lean Clay		4.4
2		29100 (g 15 K.	MC-2	5.0		Red Lean Clay		8.2
		RAMP B						
2	4	31+00 @ 33' Rt.	MC-1	3.0	10.0	Brown & Red Lean Clay		20.6
1	5	33+00 @ 33' Rt.	MC-1	0.5	7.0	Brown Lean Clay		19.5
2			MC-2	7.0		Brown Lean Clay		22.1
1	6	35+00 @ 33' Rt.	MC-1	0.0	2.5	Brown Lean Clay		12.2
1		20100 (0)20 10	MC-2	2.5		Brown Lean Clay		12.2
$\frac{1}{1}$			MC-3	5.0		Brown Lean Clay		12.6
3			MC-4	10.0		Brown Lean Clay with Sand		18.4
3			MC-5	15.0		Brown Lean Clay with Sand		21.9
1	7	38+00 @ CL	MC-1	2.0	4.0	Brown Lean Clay		16.8
2		<u> </u>	MC-2	8.0		Dark Brown Lean Clay		22.4
3			MC-3	13.0		Reddish Brown Lean Clay with Sand		20.8
5			MC-4	18.0	20.0	Brownish Gray Sandy Lean Clay		18.1
5			MC-5	22.0	24.0	Grayish Brown Sandy Lean Clay		19.2
	I	RAMP C	-					
1	8	40+00 @ 33' Rt.	MC-1	0.5	5.0	Brown Lean Clay		11.5
2			MC-2	5.0	10.0	Brown & Red Lean Clay		15.0
1	9	42+00 @ 33' Rt.	MC-1	0.5	8.0	Yellowish Orange Lean Clay		7.2
2			MC-2	8.0	19.0	Tan Lean Clay		8.1
1	10	44+00 @ CL	MC-1	0.5	10.0	Brown Lean Clay		10.0
_			101	0.1	10.0			
2	11	48+00 @ CL	MC-1	0.4	12.0	Brown Lean Clay		18.9
1	12	52+00 @ CL	MC-1	0.5		Brown Lean Clay		11.6
6			MC-2	15.0	38.0	Gray Sandy Lean Clay	5.6	10.2
		RAMP D						
1	13	60+00 @ CL	MC-1	0.0		Brown Lean Clay		11.7
1			MC-2	2.5		Brown Lean Clay		11.5
6			MC-3	5.0		Gray Sandy Lean Clay		11.2
6 6			MC-4	10.0		Gray Sandy Lean Clay		12.6
6			MC-5 MC-6	<u>15.0</u> 20.0		Gray Sandy Lean Clay Gray Sandy Lean Clay		12.8 11.6
6			MC-0 MC-7	25.0		Gray Sandy Lean Clay		11.0
6			MC-8	30.0		Gray Sandy Lean Clay		6.9
7			MC-9	35.0		Orange Silty Sand		7.0
7			MC-10	40.0		Orange Silty Sand		9.7

CONSULTING ENGINEERS

Moisture Data

(AASHTO T255-T265)

Natural

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee

Job Number : 10217 Project Job No. : 38001-1684-0438001-1684-04

	umber :		1 1/04 0			(AASHTO T255-T265)		Natural
		b.: 38001-1684-043800		ł				Moisture
Soil	Boring	Station & Offset	Sample No.	Da	pth	Description of Soil		Content (%)
<u>10.</u> 7	No.	Station & Offset	MC-11	45.0		Orange Silty Sand	pH	10.9
			WIC-II	45.0	50.0			10.9
1	14	64+00 @ 33' Rt.	MC-1	0.0	2.5	Light Brown Lean Clay		19.1
1		01100 (g 55 M.	MC-2	2.5	5.0	Light Brown Lean Clay		19.9
2			MC-3	5.0	10.0	Dark Brown Lean Clay		22.3
1	15	66+00 @ 33' Rt.	MC-1	0.0	2.5	Light Brown Lean Clay		20.3
1			MC-2	2.5	5.0	Light Brown Lean Clay	_	18.5
2			MC-3	5.0		Dark Brown Lean Clay	:	20.9
3			MC-4	10.0	14.0	Dark Brown Lean Clay with Sand		21.1
1	16	68+00 @ 49' Lt.	MC-1	0.5	5.0	Gray Lean Clay		11.4
1	10	08+00 @ 49 Lt.	MC-2	5.0		Brown Lean Clay		13.9
1			1410-2	5.0	10.0	Brown Lean City		15.5
1	17	70+00 @ 33' Rt.	MC-1	0.5	10.0	Brown Lean Clay		11.7
2	18	72+00 @ CL	MC-1	0.5	10.0	Gray Lean Clay		25.7
			_					
		WB EXIT LN					,	
2	19	70+00 @ 75' Lt.	MC-1	1.0	8.0	Brown, Red & Gray Lean Clay		16.2
	20	71100 0 7011	MCL	0.5	10.0	Durana & Chara Lana Clara		10.0
2	20	74+00 @ 78' Lt.	MC-1	0.5	10.0	Brown & Gray Lean Clay		19.8
2	21	76+00 @ 128' Lt.	MC-1	0.5	10.0	Brown Lean Clay		10.1
7	- 21	70+00 (tt/ 128 Lt.	MC-1 MC-2	10.0		Tan Silty Sand		5.0
/			1010-2	10.0	17.0			
2	22	78+00 @ 141' Lt.	MC-1	0.5	8.0	Brrown Lean Clay		9.9
7			MC-2	8.0	15.0	Red Silty Sand		11.2
2			MC-3	15.0	25.0	Light Brown Lean Clay		11.8
7			MC-4	25.0	30.0	White Silty Sand		3.8
							_	
		WB ENT LN		0.5	10.0			10.6
2	23	96+00 @ 100' Lt	MC-1	0.5	10.0	Brown, Red & Gray Lean Clay		19.6
2	24	98+00 @ 88' Lt.	MC-1	1.0	10.0	Brown Lean Clay		18.1
2			IVIC-1	1.0	10.0	Blown Ecan Chay		
2	25	102+00 @ 73' Lt.	MC-1	0.5	10.0	Gray Lean Clay		18.1
		EB EXIT LN						
2	26	99+50 @ 65' Rt.	MC-1	0.5	10.0	Brown, Red, & Gray Lean Clay		21.9
2	27	103+50 @ 67' Rt.	MC-1	1.0		Brown Lean Clay		14.3
1			MC-2	6.0	10.0	Gray Lean Clay	_	21.2
2	28	107+50 @ 76' Rt.	MC-1	1.0	8.0	Dark Brown Lean Clay		21.4
1	20	10/+50 (tg /0 Kt.	MC-2	8.0	10.0	Gray Lean Clay		27.3
1	29	111+50 @ 58' Rt.	MC-1	1.0	10.0	Brown Lean Clay		20.9
		EB ENT LN						
4	30	69+00 @ 70' Rt.	MC-1	0.5	10.0	Brown & Red Clayey Sand		19.2
							_	
4	31	72+00 @ 65' Rt.	MC-1	0.5	10.0	Brown Clayey Sand		15.1
		74100 @ 110 D	MOL	0.5	10.0	Duoyun & Cuori Loon Class		0 7
1	32	74+00 @ 110 Rt.	MC-1	0.5	10.0	Brown & Gray Lean Clay		8.3
		ARKING LOTS						
1	33		MC-1	2.0	4.0	Brownish Tan Lean Clay	4.3	13.6
2			MC-2	8.0		Dark Brown Lean Clay	5.16	19.5

CONSULTING ENGINEERS

Moisture Data

(AASHTO T255-T265)

Natural

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee Job Number: 10217

Proje	ct Job No.	: 38001-1684-043800	1-1684-04	4		(MASHIO 1255-1205)		Moistur
Soil								
٧o.	No.	Station & Offset	No.	De	pth	Description of Soil	pН	(%)
3			MC-3	13.0	15.0	Reddish Brown Lean Clay with Sand	5.6	20.6
1	34		MC-1	2.0	4.0	Tannish Brown Lean Clay		13.3
2			MC-2	8.0	10.0	Dark Brown Lean Clay		17.9
2			MC-3	13.0	15.0	Reddish Brown Lean Clay		16.0
1	35		MC-1	2.0	4.0	Dark Brown Lean Clay		20.3
2			MC-2	8.0		Dark Brown Lean Clay		19.4
3			MC-3	13.0		Brown & Orange Lean Clay with Sand		20.5
			-					
1	36		MC-1	2.0	4.0	Brownish Tan Lean Clay		19.0
2			MC-2	8.0	10.0	Dark Brown Lean Clay		22.2
4			MC-3	13.0		Brown & Red Clayey Sand		16.3
····								
1	37		MC-1	2.0	4.0	Brownish Tan Lean Clay		14.2
2			MC-2	8.0		Dark Brown Lean Clay		19.3
3			MC-3	13.0		Brownish Red Lean Clay with Sand		16.2
			110-5	1.5.0		provident cour cour only with build		10.2
1	38		MC-1	2.0	4.0	Brownish Tan Lean Clay		16.9
2	00		MC-2	8.0		Dark Brown Lean Clay		21.4
3			MC-3	13.0		Brownish Red Lean Clay with Sand		17.7
5			WIC-J	15.0	15.0	Brownish Ked Lean Clay with Sand		17.7
1	39		MC-1	2.0	4.0	Brownish Tan Lean Clay		18.7
2			MC-1 MC-2	8.0		Dark Brown Lean Clay		18.6
2 4			MC-2 MC-3	13.0		Brownish Red Clayey Sand	5.24	15.6
4			IVIC-J	15.0	15.0		5.24	15.0
1	40		MC-1	2.0	4.0	Brown Lean Clay		10.6
1 2	40		MC-1 MC-2	8.0		Brown Lean Clay		19.2
_			MC-2 MC-3	13.0		Brownish Orange Lean Clay with Sand		19.2
3			IVIC-3	13.0	15.0	Brownish Orange Lean Clay with Sand		19.0
			NG 1		10			10.0
1	41		MC-1	2.0		Brown Lean Clay		10.0
2			MC-2	8.0		Dark Brown Lean Clay		19.6
3			MC-3	13.0	15.0	Dark Brown Lean Clay with Sand		20.7
	10		11/01	2.0	10			15 6
1	42		MC-1	2.0		Brownish Tan Lean Clay		15.6
2			MC-2	8.0		Brown Lean Clay		20.8
3		an der staaren det die	MC-3	13.0	15.0	Brown Lean Clay with Sand		23.2
	10			2.0	1.0			1.7.6
1	43		MC-1	2.0		Brownish Tan Lean Clay		15.6
2			MC-2	6.0		Reddish Brown Lean Clay		17.6
3			MC-3	13.0	15.0	Brown Lean Clay with Sand		20.9
_				0-	1.2			
1	44		MC-1	0.7		Brownish Tan Lean Clay		21.4
2			MC-2	6.1		Dark Brown Lean Clay	<u> </u>	19.7
3			MC-3	12.0	15.0	Brown Lean Clay with Sand		21.6
_				0.5	2.0			
1	45		MC-1	0.7	3.9	Brownish Tan Lean Clay	<u> </u>	15.9
2			MC-2	3.9		Dark Brown Lean Clay		21.3
ŧ			MC-3	11.0	15.0	Brownish Orange Clayey Sand		14.9
1	46		MC-1	0.7		Brownish Tan Lean Clay		12.6
2			MC-2	3.9		Dark Brown Lean Clay		20.5
3			MC-3	12.0	15.0	Brownish Orange Lean Clay with Sand		19.4
		VERIFICATION	BORINGS					
		Ramp A						
1	47	22+00 @ 34' Lt	SS-1	2.5		Brown Lean Clay		18.7
1			SS-2	5.0		Brownish Red Lean Clay		15.4
2			SS-3	10.0	11.5	Brownish Gray Lean Clay	I T	19.4

P O Box 7267 • Paducah, KY 42002 • 2550 Irvin Cobb Drive • Paducah, KY 42003 • (270) 444-9691 • fax (270) 443-3943 e-mail: fhcorporate@flohut.com

CONSULTING ENGINEERS

Moisture Data

(AASHTO T255-T265)

Natural

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee Job Number : 10217

-		.: 38001-1684-04380				(AASITIO 1255-1205)		Moistur
Soil	·		Sample					Conten
No.	No.	Station & Offset	No.		epth	Description of Soil	pH	(%)
<u>8</u> 9			ST-1	15.0		Light Gray & Tan Sandy Lean Clay		24.1
9 9			ST-2	20.0		Beige & Yellowish Orange Lean Clay with Sand		26.1
			SS-4	25.0	26.5	Gray Lean Clay with Sand		24.6
10			SS-5	30.0		Gray Lean Clay with Sand		24.7
10			SS-6	35.0				22.4
10			ST-3	40.0	42.0	Gray Lean Clay with Sand		16.7
		D D						
2	49	Ramp B	00.1	2.5	10			
2	49	34+00 @ 75' Rt.	<u>SS-1</u> SS-2	2.5	4.0	Brown Lean Clay		17.9
2			SS-2 SS-3	10.0	6.5	Brown Lean Clay		16.6
2 9				1	+	Brown Lean Clay		17.3
9 9			<u>SS-4</u> SS-5	15.0		Brown & Gray Lean Clay with Sand		21.3
9 9						Brown & Gray Lean Clay with Sand		20.6
9 9		a an	<u>SS-6</u>	25.0		Brown & Gray Lean Clay with Sand		25.6
9			SS-7	30.0		Gray Lean Clay with Sand		26.9
ιV		·····	SS-8	35.0	30.5	Gray & Orange Lean Clay with Sand		25.5
_		Ramp C			<u> </u>			
2	51	41+50 @ 88' Rt.	SS-1	5.1	6.0	Drown Loon Class		
2 11	51	41-50 @ 88 Kl.				Brown Lean Clay		10.3
1			SS-2	10.4		Brown & Black Silty Sand		7.9
1		Contra Manual or Annual	SS-3	15.4	16.9	Brown, Red & Black Silty Sand		15.2
_			ST-2	20.4		Reddish Orange Silty Sand		12.7
12			ST-3	24.0	25.5	Reddish Orange Poorly Graded Sand with Silt		9.8
1	52	52100 (2) 25114	00.1	5.0	6.5			
1	52	52+00 @ 35' Lt.	SS-1	5.0	6.5	Tan & Brown Lean Clay		10.1
			SS-2	10.0		Gray & Brown Lean Clay		18.2
8			SS-3	15.0		Tan & Brown Sandy Lean Clay		14.5
3			SS-4	20.0	21.5	Tan & Brown Sandy Lean Clay		14.0
8			SS-5	25.0	26.5	Tan & Orange Sandy Lean Clay		15.6
8		The last second s	SS-6	30.0		Tan & Orange Sandy Lean Clay		13.9
7			SS-7	35.0		Tan & Orange Silty Sand		7.6
7			SS-8	40.0		Tan & Orange Silty Sand		8.7
7			SS-9	45.0		Tan Silty Sand		20.4
7			SS-10	50.0	51.5	Tan Silty Sand		26.0
_		(1, #0, C) 001 D						
2	53	61+50 @ 30' Rt.	SS-1	2.5		Brown Lean Clay		13.8
2			SS-2	4.0		Brown Lean Clay		16.0
3			SS-3	9.0		Brown Lean Clay with Sand		14.0
3			SS-4	14.0	15.5	Brown & Tan Lean Clay with Sand		14.2
3			SS-5	19.0	20.5	Orange, Gray & Tan Sandy Lean Clay		12.7
3			SS-6	24.0		Orange, Gray & Tan Sandy Lean Clay		8.8
7			SS-7	29.0	30.5	Orange Silty Sand		9.4
2			SS-8	34.0	35.5	Orange & Tan Silty Sand		6.2
		(III) (III) (III)						
		GE (EB ACCESS)						
2	55	8+62 @ 29' Lt.	SS-1	2.5		Brown & White Lean Clay		17.0
			SS-2	4.5		Brown & White Lean Clay		16.8
			SS-3	9.5		Brown, White & Orange Lean Clay with Sand		18.0
			SS-4	14.5		Orange, Gray & Brown Lean Clay with Sand		21.2
3			ST-1	19.5		Multicolor Sandy Lean Clay		14.5
3			SS-5	24.5		Gray & Brown Sandy Lean Clay		16.3
			SS-6	29.5		Orange & Gray Silty Sand		9.6
			SS-7	34.5		Orange Silty Sand		11.6
			SS-8	39.5	41.0	Orange, Pink & Gray Silty Sand		11.1
			SS-9	44.5	46.0	Orange, Pink & Gray Silty Sand		18.9
			SS-10	49.5	51.0	Orange, Pink & Gray Silty Sand		21.2
4			SS-11	54.5	56.0	Orange & Tan Well-Graded Sand with Silt		21.4
4			SS-12	59.5		Tan Well-Graded Sand with Silt		21.2
4			SS-13	64.5	66.0	Tan Well-Graded Sand with Silt		23.3

CONSULTING ENGINEERS

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee Job Number: 10217

Project Job No. : 38001-1684-0438001-1684-04

Moisture Data

(AASHTO T255-T265)

Natural

20.6

Moisture Soil Boring Sample Content Station & Offset No. No. No. Depth Description of Soil pН (%)SS-14 Tan Well-Graded Sand with Silt 14 69.5 71.0 22.4 14 SS-15 74.5 76.0 Tan & Orange Well-Graded Sand with Silt 22.0 14 SS-16 79.5 81.0 Tan & Orange Well-Graded Sand with Silt 23.7 14 SS-17 84.5 86.0 Tan, Red & Orange Well-Graded Sand with Silt 27.2 15 SS-18 89.5 91.0 Tan & Orange Poorly Graded Sand 20.4 15 SS-19 94.5 96.0 Tan Poorly Graded Sand 22.4 15 SS-20 99.5 101.0 Tan Poorly Graded Sand 20.1 16 56 8+62 @ 29' Rt. Brown Lean Clay SS-1 2.5 4.0 16.1 16 SS-2 4.5 6.0 Brown Lean Clay 10.0 SS-3 9.5 22 11.0 Brown, Gray & Orange Silty Clay 15.4 22 SS-4 14.5 16.0 Brown, Orange & Gray Silty Clay 20.4 17 ST-1 19.5 Orange Lean Clay with Sand 20.4 31.1 18 ST-2 24.5 26.0 Light Gray & Reddish Orange Silty, Clayey Sand 13.3 Gray Silty, Clayey Sand 18 29.5 SS-5 31.0 21.3 19 ST-3 34.5 36.1 Light Gray Silt with Sand 17.8 20 ST-4 39.5 41.2 Light Gray Lean Clay with Sand 17.4 ST-5 21 44 5 White & Yellow Orange Poorly Graded Sand with Silt 45.0 15.8 21 SS-6 49.5 51.0 Orange & Tan Poorly Graded Sand with Silt 21.9 21 SS-7 54.5 Orange & Tan Poorly Graded Sand with Silt 56.0 22.5 21 SS-8 59.5 61.0 Orange & Tan Poorly Graded Sand with Silt 22.0 SS-9 64.5 Tan Poorly Graded Sand with Silt 21 66.0 21.3 SS-10 21 69.5 71.0 Tan Poorly Graded Sand with Silt 23.7 14 SS-11 74.5 76.0 Orange & Tan Well-Graded Sand with Silt 23.3 14 SS-12 79.5 Orange & Tan Well-Graded Sand with Silt 81.0 25.2 14 SS-13 84.5 86.0 Tan Well-Graded Sand with Silt 24.7 15 SS-14 89.5 91.0 Tan Poorly Graded Sand 21.2 15 SS-15 94.5 96.0 Orange & Tan Poorly Graded Sand 23.2 15 SS-16 99.5 101.0 Pink & Tan Poorly Graded Sand 19.9 57 16 10+00 @ 25' Lt. SS-1 4.9 6.4 Brown Lean Clay 25.2 16 SS-2 99 11.4 Brown Lean Clay 20.3 22 ST-1 14.9 5.93 15.5 Brown Silty Clay 22.2 22 SS-3 16.9 18.4 Gray & Black Silty Clay 19.0 17 SS-4 19.9 21.4 Brown & Gray Lean Clay with Sand 24.5 26.5 Light Gray Silty, Clayey Sand 24.9 18 ST-2 22.1 31.4 Brown & Gray Silty, Clayey Sand 18 SS-5 29.4 20.418 SS-6 35.5 Red & Gray Silty, Clayey Sand 37.0 14.3 19 SS-7 Red & Gray Silt with Sand 39.9 41.4 11.9 Brown, Gray & Dark Red Poorly Graded Sand with Silt 21 SS-9 49.9 51.4 19.5 21 SS-10 54.9 56.4 Gray Poorly Graded Sand with Silt 24.0 21 SS-11 59.9 61.4 Red & Gray Poorly Graded Sand with Silt 20.7 21 SS-12 64.9 66.4 Red & Gray Poorly Graded Sand with Silt 22.5 14 SS-13 69.9 71.4 Red & Gray Well-Graded Sand with Silt 21.5 14 SS-14 74.9 76.4 Red & Gray Well-Graded Sand with Silt 20.2 14 SS-15 79.9 81.6 Red & Gray Well-Graded Sand with Silt 23.8 14 SS-16 84.9 86.4 Red & Gray Well-Graded Sand with Silt 24.3 91.4 Red & Gray Poorly Graded Sand 15 SS-17 89.9 20.2 15 SS-18 94.9 96.4 Red & Gray Poorly Graded Sand 16.2 15 SS-19 99.9 100.4 Red & Gray Poorly Graded Sand 19.6 58 10+00 @ 25' Rt. SS-1 2.7 16 4.3 Brown Lean Clay 19.7 22 SS-2 7.7 9.3 Brown Silty Clay 24.2 SS-3 22 12.7 14.3 Brown & Red Silty Clay 20.5 23 ST-1 17.7 19.5 Light Gray Lean Clay with Sand 6.44 24.5 23 SS-4 22.7 24.3 Brown & Red Lean Clay with Sand 29.5 27.7 29.3 Gray Lean Clay with Sand 23 SS-5 26.7 24 ST-2 32.7 34.2 White & Gray Sandy Lean Clay 20.8 24 SS-6 37.7 39.3 Gray Sandy Lean Clay

P O Box 7267 • Paducah, KY 42002 • 2550 Irvin Cobb Drive • Paducah, KY 42003 • (270) 444-9691 • fax (270) 443-3943 e-mail: fhcorporate@flohut.com

23

15

16

16

16

CONSULTING ENGINEERS

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee

Job Number: 10217

Moisture Data

(AASHTO T255-T265)

Natural

19.9

Project Job No.: 38001-1684-0438001-1684-04 Moisture Soil Boring Sample Content pН No. No. Station & Offset No. Depth Description of Soil (%) 14 42.7 SS-7 44.3 Brown & Gray Well-Graded Sand with Silt 19.7 14 SS-8 47.7 49.3 Brown & Gray Well-Graded Sand with Silt 20.6 14 SS-9 52.7 54.3 Gray Well-Graded Sand with Silt 21.6 14 SS-10 57.7 59.3 Gray Well-Graded Sand with Silt 23.7 14 SS-11 62.7 64.3 Gray Well-Graded Sand with Silt 19.8 14 SS-12 67.7 ·69.3 Gray Well-Graded Sand with Silt 22.0 14 SS-13 72.7 74.3 Gray Well-Graded Sand with Silt 22.1 14 SS-14 77.7 79.3 Gray Well-Graded Sand with Silt 22.6 14 SS-15 84.3 Gray Well-Graded Sand with Silt 82.7 21.5 15 SS-16 87.7 88.3 Gray Poorly Graded Sand 21.3 15 SS-17 92.7 94.3 Gray Poorly Graded Sand 18.1 15 SS-18 97.7 99.3 Gray Poorly Graded Sand 23.3 16 59 11+67 @ 29' Lt. SS-1 4.1 Brown Lean Clay 5.6 4.8 19.0 16 SS-2 9.1 10.6 Brown Lean Clay 4.8 22.5 25 SS-3 14.1 Gray Lean Clay with Sand 15.6 26.7 19.1 25 ST-1 20.9 Gray Lean Clay with Sand 26.6 25 SS-4 24.1 25.6 Gray Lean Clay with Sand 24.7 24 ST-2 29.1 30.8 Light Gray Sandy Lean Clay 20.3 24 SS-5 34.1 35.6 Gray Sandy Lean Clay 26.0 24 SS-6 39.1 Gray Sandy Lean Clay 40.6 18.2 21 SS-7 44.1 45.6 Red & Brown Poorly Graded Sand with Silt 17.9 50.6 Red & Brown Poorly Graded Sand with Silt 21 SS-8 49.1 19.8 21 SS-9 54.1 55.6 Red & Brown Poorly Graded Sand with Silt 21.3 21 SS-10 59.1 60.6 Red & Brown Poorly Graded Sand with Silt 23.3 21 SS-11 64.1 65.6 Red & Brown Poorly Graded Sand with Silt 23.0 14 SS-12 69.1 70.6 Red & Brown Well-Graded Sand with Silt 24.0 14 SS-13 74.1 75.6 Red & Brown Well-Graded Sand with Silt 5.2 14 SS-14 79.1 80.6 Gray Well-Graded Sand with Silt 21.9 85.6 Gray Well-Graded Sand with Silt 14 SS-15 84.1 22.2 14 SS-16 89.1 90.6 Gray Well-Graded Sand with Silt 21.7 15 SS-17 94.1 95.6 Red & Gray Poorly Graded Sand 15.5 15 SS-18 99.1 100.6 Red & Gray Poorly Graded Sand 19.0 16 60 11+60 @ 29' Rt. SS-1 4.0 5.5 Brown Lean Clay 19.7 16 SS-2 9.0 10.5 Brown Lean Clay 18.0 11 16.0 17.5 Brown & Red Silty Sand SS-3 21.3 SS-4 21.0 22.5 Red & White Lean Clay with Sand 25.3 23 SS-5 24.0 25.5 Gray Lean Clay with Sand 26.3 23 ST-3 29.0 30.6 Light Gray Lean Clay with Sand 23.3 23 SS-6 34.0 35.5 Gray Lean Clay with Sand 19.5 26 ST-4 39.0 40.4 White, Gray & Reddish Orange Sandy Silty Clay 16.4 26 SS-7 44.0 45.5 Gray Sandy Silty Clay 19.3 26 SS-8 49.0 50.5 Red & Gray Sandy Silty Clay 20.5 26 SS-9 54.0 55.5 Red & Gray Sandy Silty Clay 23.1 14 SS-10 59.0 60.5 Red & Gray Well-Graded Sand with Silt 20.9 14 SS-11 64.0 65.5 Gray Well-Graded Sand with Silt 20.1 Gray & Red Well-Graded Sand with Silt 14 SS-12 69.0 70.5 21.6 14 SS-13 75.5 Gray & Red Well-Graded Sand with Silt 74.0 21.0 14 SS-14 79.0 80.5 Gray & Red Well-Graded Sand with Silt 22.6 14 84.0 SS-15 85.5 Gray & Red Well-Graded Sand with Silt 21.5 14 SS-16 89.0 90.5 Gray & Red Well-Graded Sand with Silt 22.5 SS-17 94.0 Gray & Red Poorly Graded Sand 95.5 18.1 15 SS-18 99.0 100.5 Gray & Red Poorly Graded Sand 20.7 WELCOME CENTER 61 SS-1 2.0 3.5 Brown & Gray Lean Clay 22.7 SS-2 4.7 6.2 Brown Lean Clay 21.4

P O Box 7267 • Paducah, KY 42002 • 2550 Irvin Cobb Drive • Paducah, KY 42003 • (270) 444-9691 • fax (270) 443-3943 e-mail: fhcorporate@flohut.com

11.2 Brown Lean Clay

SS-3

9.7

CONSULTING ENGINEERS

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee Job Number : 10217

Moisture Data

Project Job No. : 38001-1684-0438001-1684-04						(AASHTO T255-T265)			
Soil	Boring		Sample					Moistur Conten	
No.	No.	Station & Offset	No.		epth	Description of Soil	pН	(%)	
27			SS-4	14.7	16.2			28.5	
27			SS-5	19.7		Brown & Gray Sandy Lean Clay		25.6	
28			SS-6	24.7	26.2	Gray Lean Clay with Sand		28.5	
29			SS-7	29.7	31.2	Gray Lean Clay with Sand		29.7	
30			SS-8	34.7	36.2	Gray Sandy Lean Clay		29.1	
30			SS-9	39.7	41.2	Gray Sandy Lean Clay		27.7	
30			SS-10	44.7	46.2	Gray Sandy Lean Clay		27.3	
30			SS-11	49.7	51.2	Gray Sandy Lean Clay		25.4	
30			SS-12	54.7	56.2	Gray Sandy Lean Clay		26.7	
30			SS-13	59.7	61.2	Gray Sandy Lean Clay		25.8	
16	(2)	····	00.1	25	10	D I CI	_		
6	62		SS-1	2.5	4.0	Brown Lean Clay		24.3	
16			SS-2	4.5		Brown Lean Clay		23.2	
23			SS-3	9.5		Brown Lean Clay	_	19.5	
23			<u>SS-4</u> SS-5	14.5 19.5		Light Gray Lean Clay with Sand		20.6	
.7 27			<u>SS-5</u> SS-6	24.5		Brown Sandy Lean Clay		26.4	
.7 27						Brown Sandy Lean Clay		24.2	
28		·····	ST-1	29.5		Beige & Yellowish Orange Sandy Lean Clay		28.2	
:8 :9			SS-7 SS-8	34.5 38.5	36.0	Gray Lean Clay with Sand		27.5	
59 30			SS-8 SS-9	38.5 44.5		Brown Lean Clay with Sand		26.3	
0			SS-10	44.5		Gray Sandy Lean Clay	_	23.7	
0						Gray Sandy Lean Clay		24.7	
0			SS-11 SS-12	54.5 59.5	56.0	Gray Sandy Lean Clay		25.2	
U			55-12	39.3	61.0	Gray Sandy Lean Clay		25.3	
6	63	······	SS-1	0.0	2.5	Brown Lean Clay		20.8	
6			SS-2	5.0		Brown Lean Clay		19.8	
7		- Marco	SS-3	10.0		Brown, Orange & Gray Sandy Lean Clay		19.0	
.7			SS-4	15.0	16.5	Brown, Orange & Gray Sandy Lean Clay		19.4	
7			SS-5	20.0		Brown, Orange & Gray Sandy Lean Clay		19.4	
.8			ST-1	25.0		Light Gray & Yellowish Orange Lean Clay with Sand		23.4	
8			SS-6	30.0	31.5	Gray & Brown Lean Clay with Sand		25.8	
.9			ST-2	35.0	36.1	Brown Lean Clay with Sand		25.8	
9			SS-7	40.0		Dark Gray Lean Clay with Sand		26.8	
0			ST-3	45.0		Gray Sandy Lean Clay		20.8	
0			SS-8	50.0		Dark Gray Sandy Lean Clay		23.8	
0			SS-9	55.0		Dark Gray Sandy Lean Clay		23.8	
0		- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	SS-10	60.0		Dark Gray Sandy Lean Clay		23.5	
Ť			00.10	00.0	01.5	Durk Gruy Durky Ecan Clay		23.5	
6	64		SS-1	2.5	4.0	Red & Gray Lean Clay		20.6	
6			SS-2	5.0		Red & Gray Lean Clay		20.0	
7			SS-3	10.0	11.5	Red & Gray Sandy Lean Clay		11.7	
1			ST-1	15.0		Beige & Tan Lean Clay with Sand	6.27	23.5	
1			SS-4	20.0		Red & Gray Lean Clay with Sand	1	24.8	
8			SS-5	25.0		Light Gray Lean Clay with Sand		24.1	
0			SS-6	30.0		Light Gray Sandy Lean Clay		23.8	
0			SS-7	35.0		Light Gray Sandy Lean Clay	+ +	26.8	
0			SS-8	40.0	41.5	Light Gray Sandy Lean Clay	+ +	23.7	
)			SS-9	45.0	46.5	Light Gray Sandy Lean Clay	++	25.1	
)			SS-10	50.0	51.5	Gray Sandy Lean Clay		24.6	
5			SS-11	55.0		Gray Sandy Lean Clay	+ +	25.1	
)			SS-12	60.0		Gray Sandy Lean Clay	++	26.6	
5	65		SS-1	2.0	3.5	Brown Lean Clay		26.3	
5			SS-2	4.7		Brown Lean Clay	1	25.3	
5			SS-3	9.7		Brown & Gray Lean Clay	++	19.3	
7			SS-4	14.7	16.2	Brown & Gray Sandy Lean Clay	++	24.9	
1			SS-5	19.7	21.2	Gray Lean Clay with Sand	+	30.0	
1			SS-6	24.7		Gray Lean Clay with Sand		26.2	

CONSULTING ENGINEERS

Moisture Data

Project Name : Solar Farm Information & Welcome Center Site Design Location : Haywood County, Tennessee Job Number : 10217

Soil	Boring	: 38001-1684-043800	Sample	:		1		Moisture Content	
No.	No.	Station & Offset	No.		epth	Description of Soil	pH	(%)	
31			SS-7	29.7	31.2			26.9	
32			ST-1	34.7		Dark Gray Silty Sand		24.0	
30			SS-8	39.7	41.2			23.2	
30 30			SS-9	44.7	46.2			26.3	
$\frac{30}{30}$			SS-10	49.7	51.2			26.7	
30 30			SS-11	54.7	56.2			22.2	
30			SS-12	59.7	61.2	Gray Sandy Lean Clay		26.6	
16	66		SS-1	2.0	25	Drawn Loon Class			
16			SS-1	4.7	3.5	Brown Lean Clay Brown Lean Clay		21.6	
16			SS-3	9.7		Brown Lean Clay		23.9	
31			SS-4	14.7		Gray Lean Clay with Sand		18.5	
31			ST-1	19.7		Gray & Yellowish Orange Lean Clay with Sand		22.7 25.1	
27			ST-1	20.3	20.8	Gray & Yellowish Orange Sandy Lean Clay		25.1	
32			SS-5	24.7	26.2	Dark Gray Silty Sand		23.2	
32			SS-6	29.7		Dark Gray Silty Sand		23.2	
32			SS-7	34.7		Dark Gray Silty Sand		23.8	
32			SS-8	39.7		Dark Gray Silty Sand		23.8	
32			SS-9	44.7		Dark Gray Silty Sand		23.2	
32			SS-10	49.7	51.2	Dark Gray Silty Sand		23.2	
32			SS-11	54.7	56.2	Dark Gray Silty Sand		22.2	
32			SS-12	59.7	61.2	Dark Gray Silty Sand		24.3	
								w	
6	67		SS-1	2.0	3.5	Brown Lean Clay		19.8	
6			SS-2	4.8	6.3	Brown Lean Clay		21.2	
27	- Harr		SS-3	9.8	11.3	Brown Sandy Lean Clay		17.2	
27			SS-4	14.8		Brown Sandy Lean Clay		19.9	
27			SS-5	19.8		Brown Sandy Lean Clay		22.4	
27			SS-6	24.8	26.3	Gray Sandy Lean Clay		23.4	
2			SS-7	29.8	31.3	Gray Silty Sand		24.3	
2			SS-8	39.8	41.3	Gray Silty Sand		26.5	
2			SS-9	44.8	46.3	Gray Silty Sand		25.1	
2			SS-10	49.8		Gray Silty Sand		25.9	
2			SS-11	54.8		Gray Silty Sand		25.9	
2			SS-12	59.8	61.3	Gray Silty Sand		25.6	
6	68		00.1	2.0	2.5				
$\frac{6}{6}$	- 08		SS-1 SS-2	2.0 4.5	3.5	Brown Lean Clay		18.0	
7			SS-2 SS-3	4.5	6.0	Brown Lean Clay		24.3	
7			SS-3	14.5	21.0	Brown & Gray Sandy Lean Clay Brown Sandy Lean Clay		20.8	
3			SS-5	24.5	21.0	Gray Lean Clay with Sand		24.4	
3			ST-2	29.5		Gray Lean Clay with Sand	_	26.0	
2			SS-6	34.5		Gray Silty Sand		25.6	
2			SS-0	39.5		Gray Silty Sand		21.4	
$\frac{2}{2}$	·····		SS-8	44.5		Gray Silty Sand		24.3 24.6	
2			SS-9	49.5		Gray Silty Sand		24.6	
2			SS-10	54.5	56.0	Gray Silty Sand		24.5	
2			SS-11	59.5		Gray Silty Sand		24.9	
								47.2	
								· · · · · ·	
								1994.01	
				1					

CONSULTING ENGINEERS

SOIL CLASSIFICATION

			,		
Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 1
Project County	:	Haywood	Sample Loc.	:	Boring No. 33
Project State	:	Tennessee	Sample Depth	:	0.7' to 4.9'
Laboratory No.	:	10217	Date Tested	:	10-19-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	:	Brownish Tan Lean Clay			

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.5
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	98.5
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0281	mm	76.2
	Hyd. Rd.	#2	0.0191	mm	58.7
T88	Hyd. Rd.	#3	0.0117	mm	40.0
AASHTO T88	Hyd. Rd.	#4	0.0085	mm	32.9
AAS	Hyd. Rd.	# 5	0.0061	mm	26.8
	Hyd. Rd.	#6	0.0030	mm	20.7
	Hyd. Rd.	#7	0.0013	mm	16.8
0 1 <i>C</i>)				

 $D_{50} = 0.0152 \text{ mm}$

CBR (AASHTO: T-193) : 7 Dry Dens. (AASHTO: T-99; Method (A)) : 105 pcf

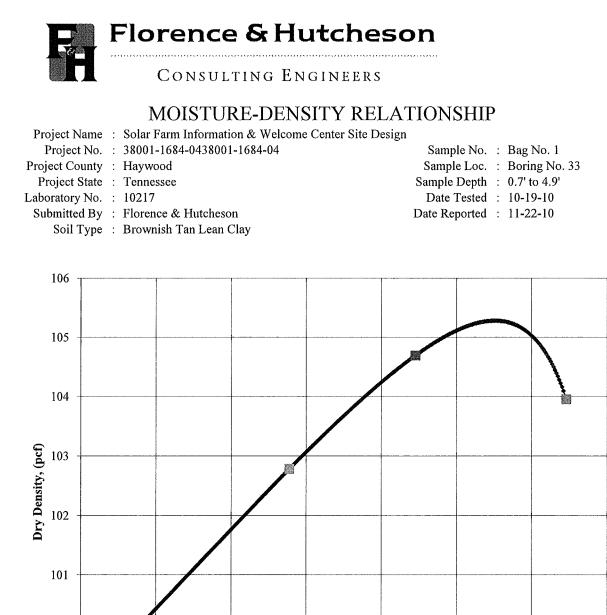
Opt. Moist. (AASHTO: T-99; Method (A)) : 18 %

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

- Coarse Sand (-No.10 + No.40) : 0.5
- Fine Sand (-N0.40 + N0.200) : 1.0
 - Silt (-No.200 + 0.002mm) : 79.7
 - Clay (-0.002mm + 0.001mm) : 3.7 Colloids (-0.001mm) : 15.1

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0


DLC

Approved By :

Natural Moisture (%) (AASHTO T265) : 13.6

- Liquid Limit (AASHTO T89) : 35
 - Plastic Limit (AASHTO T90) : 22
 - Plasticity Index : 13
 - Liquidity Index : -0.68
 - Activity : 0.69
 - Sp. Gr. (AASHTO T100) : 2.672
 - AASHTO Classification: M145 : A-6 (14)
 - ASTM Classification: D2487 : CL

Soil	No.	1

MAXIMUM DENSITY: 105 pcf

100

99 ⊥ 12

OPTIMUM MOISTURE: 18 %

18

19

COMMENTS: AASHTO: T-99; Method (A)

13

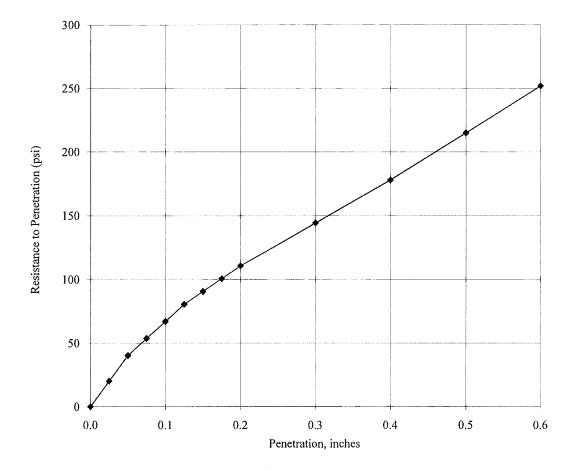
14

APPROVED BY: 04C

17

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

15


Moisture, (%)

16

CALIFORNIA BEARING RATIO

Project Name	: Solar Farm Information & Welcome (Center Site Design
Project No.	: 38001-1684-0438001-1684-04	Sample No. : Bag No. 1
Project County	: Haywood	Sample Loc. : Boring No. 33
Project State	: Tennessee	Sample Depth : 0.7' to 4.9'
Laboratory No.	: 10217	Date Tested : 10-19-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-22-10
Soil Type	: Brownish Tan Lean Clay	

Compaction Effort = 65 Blows per layerPercent Compacted = 100.1C.B.R.Percent Swell = 0.63C.B.R.

C.B.R. @ 0.1 In. = 6.7 C.B.R. @ 0.2 In. = 7.4*

COMMENTS: AASHTO: T-193

APPROVED BY: **DLC**

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design		
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: Bag No. 2
Project County	: Haywood	Sample Loc.	: Boring No. 33
Project State	: Tennessee	Sample Depth	: 4.9' to 11.0'
Laboratory No.	: 10217	Date Tested	: 10-19-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-22-10
Soil Type	: Dark Brown Lean Clay		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3,35	mm	
No.10		2	mm	100.0
				n

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.4
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	94.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0278	mm	76.6
	Hyd. Rd.	#2	0.0190	mm	57.0
T88	Hyd. Rd.	#3	0.0117	mm	39.5
AASHTO T88	Hyd. Rd.	#4	0.0084	mm	32.7
AAS	Hyd. Rd.	# 5	0.0061	mm	26.4
	Hyd. Rd.	#6	0.0030	mm	20.3
	Hyd. Rd.	#7	0.0013	mm	16.4
116	7 mm				

 $D_{50} = 0.0157 \text{ mm}$

CBR (AASHTO: T-193) : 6

Dry Dens. (AASHTO: T-99; Method (A)) : 108 pcf Opt. Moist. (AASHTO: T-99; Method (A)) : 16 %

AASHTO Composition of Total Sample: M145 Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.6

Fine Sand (-N0.40 + N0.200) : 4.5

Silt (-No.200 + 0.002mm) : 76.5 Clav (-0.002mm + 0.001mm)

$$lay(-0.002mm + 0.001mm) : 3.6$$

Colloids (-0.001mm) : 14.8

Approved By : DLC

Natural Moisture (%) (AASHTO T265) : 19.5

Liquid Limit (AASHTO T89) : 31

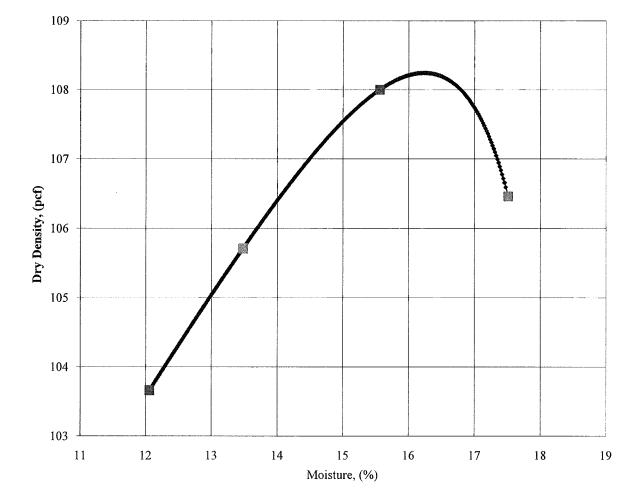
Plastic Limit (AASHTO T90) : 20

Plasticity Index : 11

Liquidity Index : -0.09

Activity : 0.60

- Sp. Gr. (AASHTO T100) : 2.678
- AASHTO Classification: M145 : A-6 (10)
 - ASTM Classification: D2487 : CL

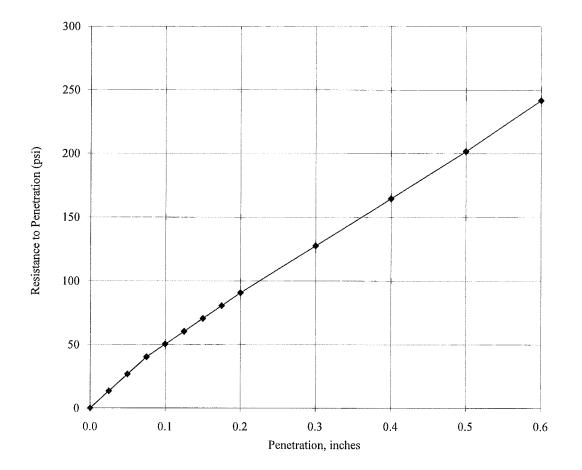

Soil No. 2

CONSULTING ENGINEERS

MOISTURE-DENSITY RELATIONSHIP

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 2
Project County	:	Haywood	Sample Loc.	:	Boring No. 33
Project State	:	Tennessee	Sample Depth	:	4.9' to 11.0'
Laboratory No.	:	10217	Date Tested	:	10-19-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	:	Dark Brown Lean Clay			

MAXIMUM DENSITY: 108 pcf


OPTIMUM MOISTURE: 16 %

COMMENTS: AASHTO: T-99; Method (A)

APPROVED BY: DLC

P er	Florence & Hutcheson
	CONSULTING ENGINEERS
	CALIFORNIA BEARING RATIO

Project Name	:	Solar Farm Information & Welcome Center Sit	te Desigi	n
Project No.	:	38001-1684-0438001-1684-04		Sample No. : Bag No. 2
Project County	:	Haywood	5	Sample Loc. : Boring No. 33
Project State	:	Tennessee	Sa	mple Depth : 4.9' to 11.0'
Laboratory No.	:	10217]	Date Tested : 10-19-10
Submitted By	:	Florence & Hutcheson	Da	te Reported : 11-22-10
Soil Type	:	Dark Brown Lean Clay		

Compaction Effort = 65 Blows per layerPercent Compacted = 100.8C.B.Percent Swell = 0.33C.B.

C.B.R. @ 0.1 In. = 5 C.B.R. @ 0.2 In. = 6*

COMMENTS: AASHTO: T-193

APPROVED BY: _____

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name : Solar Farm Information & Welcome Center Site Design												
oject No.	: 38	001-1684-04	38001	-1684-04				Sample No.	: Ba	g No. 3		
ct County	: Ha	aywood					Ş	Sample Loc. : Boring No. 33				
ject State	: Te	nnessee					Sa	Sample Depth : 11.0' to 15.0'				
Laboratory No. : 10217 Date Tested : 10-19-10												
Submitted By : Florence & Hutcheson Date Reported : 11-22-10												
Soil Type : Reddish Brown Lean Clay with Sand												
O T27 :											· ·	
				% Passing						% Passing		
4	in.	101.6	mm			No.16		1.18	mm			
3.5	in.	88.9	mm			No.30		0.6	mm			
3	in.	76.2	mm			No.40		0.425	mm	99.8		
2.5	in.	63.5	mm			No.50		0.3	mm			
	oject No. ct County ject State atory No. nitted By Soil Type O T27 : 4 3.5 3	oject No. : 38 ot County : Ha ject State : Te atory No. : 10 nitted By : Fla Soil Type : Re O T27 : 4 in. 3.5 in. 3 in.	oject No. : 38001-1684-04 ot County : Haywood ject State : Tennessee atory No. : 10217 nitted By : Florence & Hu Soil Type : Reddish Brown O T27 : <u>4 in. 101.6</u> <u>3.5 in. 88.9</u> <u>3 in. 76.2</u>	ect Name:Solar Farm Informationoject No.:38001-1684-0438001et County:Haywoodject State:Tennesseeatory No.:10217nitted By:Florence & HutchesoSoil Type:Reddish Brown LeanO T27 ::101.64in.101.63.5in.88.9mm3in.76.2mm	ect Name : Solar Farm Information & Welconoject No. : 38001-1684-0438001-1684-04 et County : Haywood et County : Haywood ject State : Tennessee atory No. : 10217 nitted By : Florence & Hutcheson Soil Type : Reddish Brown Lean Clay with Second	ect Name : Solar Farm Information & Welcome Center oject No. : 38001-1684-0438001-1684-04 et County : Haywood ject State : Tennessee atory No. : 10217 nitted By : Florence & Hutcheson Soil Type : Reddish Brown Lean Clay with Sand O T27 : % Passing 4 in. 3.5 in. 3 in. 76.2 mm	ect Name : Solar Farm Information & Welcome Center Site Des oject No. : 38001-1684-0438001-1684-04 et County : Haywood ject State : Tennessee atory No. : 10217 nitted By : Florence & Hutcheson Soil Type : Reddish Brown Lean Clay with Sand O T27 : % Passing 4 in. 101.6 mm 3 in. 76.2 mm	ect Name : Solar Farm Information & Welcome Center Site Design oject No. : 38001-1684-0438001-1684-04 et County : Haywood et County : Haywood ject State : Tennessee atory No. : 10217 nitted By : Florence & Hutcheson Soil Type : Reddish Brown Lean Clay with Sand O T27 : % Passing 4 in. 3 in. 76.2 mm No.40	ect Name : Solar Farm Information & Welcome Center Site Designoject No. : 38001-1684-0438001-1684-04Sample No.ct County : HaywoodSample Loc.ject State : TennesseeSample Depthatory No. : 10217Date Testednitted By : Florence & HutchesonDate ReportedSoil Type : Reddish Brown Lean Clay with SandDate ReportedO T27 :% Passing4in.101.63in.76.210No.400.425	ect Name : Solar Farm Information & Welcome Center Site Design Sample No. : Ba oject No. : 38001-1684-0438001-1684-04 Sample Loc. : Bc et County : Haywood Sample Loc. : Bc ject State : Tennessee Sample Depth : 11 atory No. : 10217 Date Tested : 10 nitted By : Florence & Hutcheson Date Reported : 11 Soil Type : Reddish Brown Lean Clay with Sand Date Reported : 11 O T27 : % Passing 4 in. 101.6 mm 3.5 in. 88.9 Mm 3 in. 76.2 mm No.40 0.425	ect Name : Solar Farm Information & Welcome Center Site Designoject No. : $38001-1684-0438001-1684-04$ Sample No. : Bag No. 3et County : HaywoodSample Loc. : Boring No. 33ject State : TennesseeSample Depth : $11.0'$ to $15.0'$ atory No. : 10217 Date Tested : $10-19-10$ nitted By : Florence & HutchesonDate Reported : $11-22-10$ Soil Type : Reddish Brown Lean Clay with SandO T27 : $\sqrt[4]{4}$ in. 101.6 mm 3.5 in. 88.9 3 in. 76.2 4 in. 99.8	

No.60

No.80

No.100

No.200

No.270

Hyd. Rd.

#1

#2

#3

#4

#5

#6

#7

	D ₅₀	=	0.0171	mm
--	-----------------	---	--------	----

AASHTO T88

А

2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D ₅₀

CBR (AASHTO: T-193) : 3

Dry Dens. (AASHTO: T-99; Method (A)) : 110 pcf

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay (-0.002 mm + 0.001 mm) : 3.8

.....

Colloids (-0.001mm) : 20.6

Opt. Moist. (AASHTO: T-99; Method (A)) : 16 %

Coarse Sand (-No.10 + No.40) : 0.2

• . •

Fine Sand (-No.40 + No.200) : 17.5

Silt (-No.200 + 0.002mm) : 57.9

Natural Moisture (%) (AASHTO T265) : 20.6

0.25

0.18

0.15

0.075

0.053

0.0296

0.0196

0.0118

0.0085

0.0061

0.0030

0.0013

mm

82.3

65.5

53.3

41.0

35.0

29.8

25.9

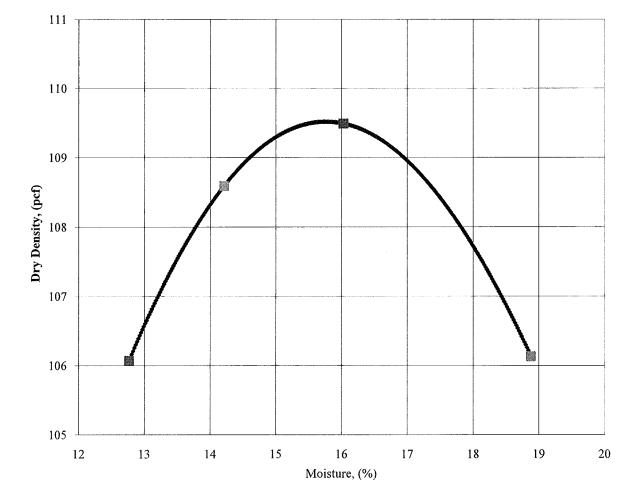
22.9

Liquid Limit (AASHTO T89) : 30

- Plastic Limit (AASHTO T90) : 21
 - Plasticity Index : 9
 - Liquidity Index : -0.02
 - Activity : 0.37
 - Sp. Gr. (AASHTO T100) : 2.639
- AASHTO Classification: M145 : A-4 (6)
- ASTM Classification: D2487 : CL

ASTM Composition of Total Sample: D2487	
Coarse Gravel ($3in. + 3/4in.$) : 0.0	
Fine Gravel $(-3/4in. + No.4)$: 0.0	
Coarse Sand $(-No.4 + No.10)$: 0.0	
Medium Sand (-No.10 + No.40) : 0.2	
Fine Sand (-No.40 + No.200) : 17.5	
Silt (-No.200 + 0.005mm) : 53.6	
Clay (-0.005mm + 0.001mm) : 8.0	
Colloids (-0.001mm) : 20.6	
	6 H.Y.
Approved By · by c	Soil No

.


3 Soil No.

CONSULTING ENGINEERS

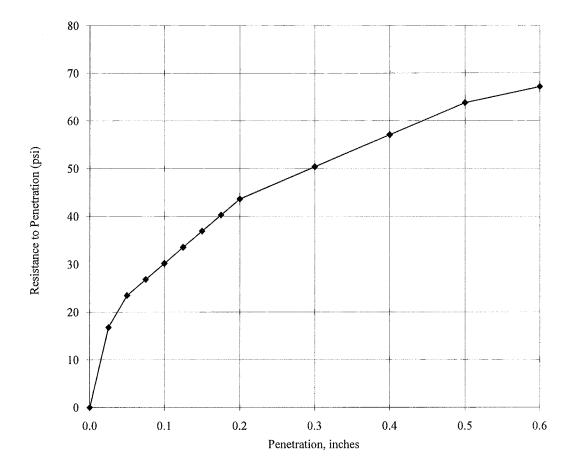
MOISTURE-DENSITY RELATIONSHIP

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 3
Project County	:	Haywood	Sample Loc.	:	Boring No. 33
Project State	:	Tennessee	Sample Depth	:	11.0' to 15.0'
Laboratory No.	:	10217	Date Tested	:	10-19-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	:	Reddish Brown Lean Clay with Sand			

MAXIMUM DENSITY: 110 pcf

OPTIMUM MOISTURE: 16 %

COMMENTS: AASHTO: T-99; Method (A)


APPROVED BY: DLC

CONSULTING ENGINEERS

CALIFORNIA BEARING RATIO

Project Name	: Solar Farm Information & Welcome Ce	nter Site Design
Project No.	: 38001-1684-0438001-1684-04	Sample No. : Bag No. 3
Project County	: Haywood	Sample Loc. : Boring No. 33
Project State	: Tennessee	Sample Depth : 11.0' to 15.0'
Laboratory No.	: 10217	Date Tested : 10-19-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-22-10
Soil Type	: Reddish Brown Lean Clay with Sand	

Compaction Effort = 65 Blows per layer Percent Compacted = 100 Percent Swell = 0.61

C.B.R. @ 0.1 In. = 3* C.B.R. @ 0.2 In. = 2.9

COMMENTS: AASHTO: T-193

APPROVED BY: DLC

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name :	Solar Farm Information & Welcome Center Site Design			
Project No. :	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 4
Project County :	Haywood	Sample Loc.	:	Boring No. 39
Project State :	Tennessee	Sample Depth	:	10.5' to 15.0'
Laboratory No. :	10217	Date Tested	:	10-19-10
Submitted By :	Florence & Hutcheson	Date Reported	;	11-22-10
Soil Type :	Brownish Red Clayey Sand			
A A GLITTO TOT				

AASHTO T27 :

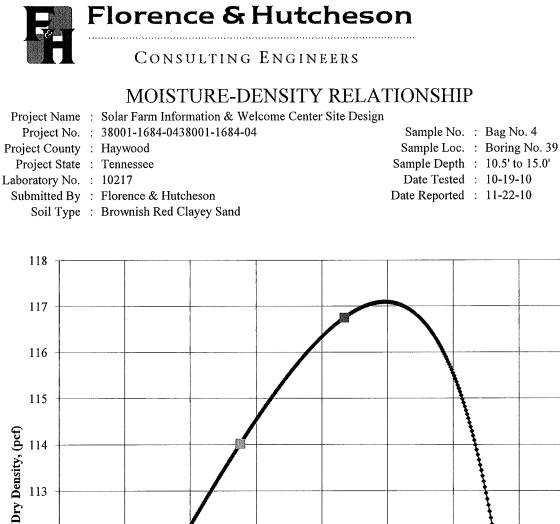
				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				n

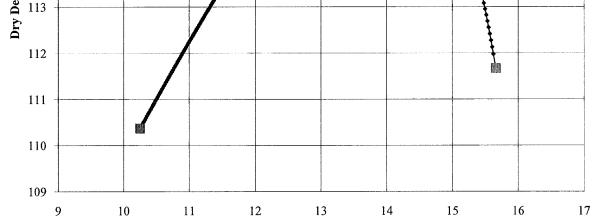
					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	34.5
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0330	mm	32.4
	Hyd. Rd.	#2	0.0209	mm	31.5
T88	Hyd. Rd.	#3	0.0121	mm	28.5
AASHTO T88	Hyd. Rd.	#4	0.0086	mm	27.4
AAS	Hyd. Rd.	#5	0.0061	mm	24.4
	Hyd. Rd.	#6	0.0030	mm	23.2
	Hyd. Rd.	#7	0.0013	mm	19.3

 $D_{50} = 0.1131 \text{ mm}$

CBR (AASHTO: T-193) : 8 Dry Dens. (AASHTO: T-99; Method (A)) : 117 pcf Opt. Moist. (AASHTO: T-99; Method (A)) : 14 % AASHTO Composition of Total Sample: M145 Gravel (3in. + No.10) : 0.0 Coarse Sand (-No.10 + No.40) : 0.1 Fine Sand (-No.40 + No.200) : 65.4 Silt (-No.200 + 0.002mm) : 13.2 Clay (-0.002mm + 0.001mm) : 3.9 Colloids (-0.001mm) : 17.4 ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 0.1 Fine Sand (-No.40 + No.200) : 65.4 Silt (-No.200 + 0.005mm) : 10.5 Clay (-0.005 mm + 0.001 mm) : 6.6 Colloids (-0.001mm) : 17.4

OLC


Natural Moisture (%) (AASHTO T265) : 15.6

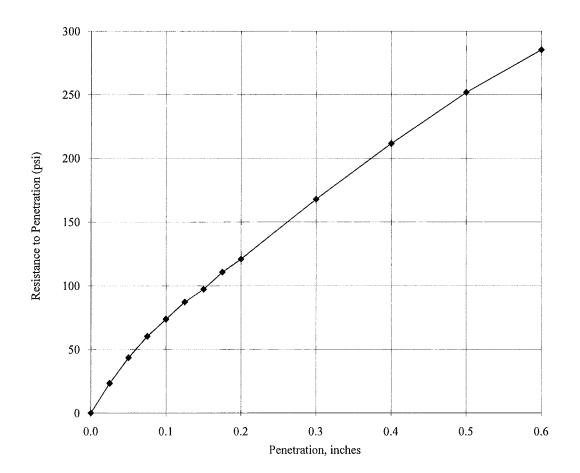

Liquid Limit (AASHTO T89) : 25

- Plastic Limit (AASHTO T90) : 15
 - Plasticity Index : 10
 - Liquidity Index : 0.11
 - Activity : 0.47
 - Sp. Gr. (AASHTO T100) : 2.650
- AASHTO Classification: M145 : A-2-4 (0)
- ASTM Classification: D2487 : SC

Approved	By	:
----------	----	---

Soil No. 4

Moisture, (%)


MAXIMUM DENSITY: 117 pcf

OPTIMUM MOISTURE: 14 %

COMMENTS: AASHTO: T-99; Method (A)

APPROVED BY: **PLC**

F err	Florence & Hu	tcheson					
Consulting Engineers							
	CALIFORNIA BEARING RATIO						
Project Name	: Solar Farm Information & Welcome C	enter Site Design					
Project No.	: 38001-1684-0438001-1684-04	Sample No. : Bag No. 4					
Project County	: Haywood	Sample Loc. : Boring No. 39					
Project State	: Tennessee	Sample Depth : 10.5' to 15.0'					
Laboratory No.	: 10217	Date Tested : 10-19-10					
Submitted By	: Florence & Hutcheson	Date Reported : 11-22-10					

Compaction Effort = 65 Blows per layer Percent Compacted = 99.3 Percent Swell = 0.48

Soil Type : Brownish Red Clayey Sand

C.B.R. @ 0.1 In. = 7.4 C.B.R. @ 0.2 In. = 8.1*

COMMENTS: AASHTO: T-193

APPROVED BY: DLC

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design		
Project No.	38001-1684-0438001-1684-04	Sample No.	: Bag No. 5
Project County	Haywood	Sample Loc.	: Boring No. 1
Project State	: Tennessee	Sample Depth	: 18.0' to 36.0'
Laboratory No.	: 10217	Date Tested	: 10-28-10
Submitted By	Florence & Hutcheson	Date Reported	: 11-22-10
Soil Type	Gray Sandy Lean Clay	-	

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				n

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	67.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0307	mm	52.6
	Hyd. Rd.	#2	0.0199	mm	46.4
AASHTO T88	Hyd. Rd.	#3	0.0116	mm	42.3
HTO	Hyd. Rd.	#4	0.0083	mm	40.4
AAS	Hyd. Rd.	#5	0.0059	mm	38.4
	Hyd. Rd.	#6	0.0029	mm	32.8
	Hyd. Rd.	#7	0.0012	mm	27.5

 $D_{50} = 0.0255 \text{ mm}$

CBR (AASHTO: T-193) : 2 Dry Dens. (AASHTO: T-99; Method (A)) : 107 pcf

Opt. Moist. (AASHTO: T-99; Method (A)) \therefore 107 per

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.1

Fine Sand (-No.40 + No.200) : 32.0

- Silt (-No.200 + 0.002mm) : 37.4
 - Clay (-0.002 mm + 0.001 mm) : 5.3

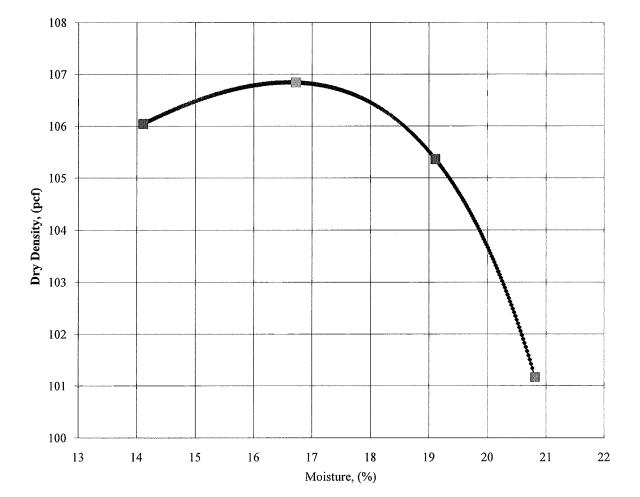
Colloids (-0.001mm) : 25.2

Approved By : DLC

Natural Moisture (%) (AASHTO T265) : 21.3

Liquid Limit (AASHTO T89) : 31

- Plastic Limit (AASHTO T90) : 16
 - Plasticity Index : 15
 - Liquidity Index : 0.34


Activity : 0.49

- Sp. Gr. (AASHTO T100) : 2.654
- AASHTO Classification: M145 : A-6 (8)
 - ASTM Classification: D2487 : CL

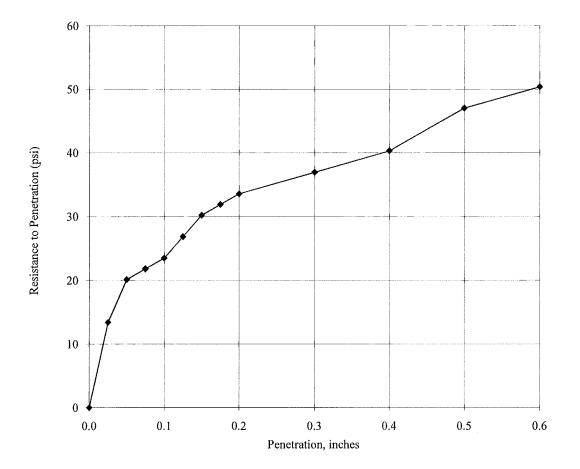
Soil No. 5

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 5
Project County	:	Haywood	Sample Loc.	:	Boring No. 1
Project State	:	Tennessee	Sample Depth	:	18.0' to 36.0'
Laboratory No.	:	10217	Date Tested	:	10-28-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	:	Gray Sandy Lean Clay			

MAXIMUM DENSITY: 107 pcf

OPTIMUM MOISTURE: 17 %

COMMENTS: AASHTO: T-99; Method (A)


APPROVED BY: DLC

CONSULTING ENGINEERS

CALIFORNIA BEARING RATIO

Project Name :	Solar Farm Information & Welcome Center Si	te Design	
Project No. :	38001-1684-0438001-1684-04	Sample No. : Bag No. 5	
Project County :	Haywood	Sample Loc. : Boring No. 1	
Project State :	Tennessee	Sample Depth : 18.0' to 36.0'	
Laboratory No. :	10217	Date Tested : 10-28-10	
Submitted By :	Florence & Hutcheson	Date Reported : 11-22-10	
Soil Type :	Gray Sandy Lean Clay		

Compaction Effort = 65 Blows per layer Percent Compacted = 99.8 Percent Swell = 0.96

C.B.R. @ 0.1 In. = 2.4* C.B.R. @ 0.2 In. = 2.2

COMMENTS: AASHTO: T-193

APPROVED BY: **blc**

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design		-
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: Bag No. 6
Project County	: Haywood	Sample Loc.	: Boring No. 12
Project State	: Tennessee	Sample Depth	: 15.0' to 38.0'
Laboratory No.	: 10217	Date Tested	: 10-28-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-22-10
Soil Type	: Gray Sandy Lean Clay		

AASHTO T27 :

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nm nm nm nm nm	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nm nm nm nm	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nm nm nm	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nm nm	
1 3/4 in. 45 m 1 1/2 in. 38.1 m 1 1/2 in. 31.5 m 1 in. 25 m 3/4 in. 19 m 1/2 in. 12.5 m	nm	
1 1/2 in. 38.1 m 1 1/4 in. 31.5 m 1 in. 25 m 3/4 in. 19 m 1/2 in. 12.5 m		
1 1/4 in. 31.5 n 1 in. 25 m 3/4 in. 19 m 1/2 in. 12.5 m	nm	
1 in. 25 m 3/4 in. 19 m 1/2 in. 12.5 m		
3/4 in. 19 n 1/2 in. 12.5 n	nm	
1/2 in. 12.5 m	nm	
	nm	
3/8 in. 9.5 m	nm	
	nm	
1/4 6.3 n	nm	
No.4 4.75 n	nm	100.0
No.6 3.35 m		
No.10 2 n	nm	

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.6
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	65.1
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0306	mm	50.3
	Hyd. Rd.	#2	0.0198	mm	45.1
T88	Hyd. Rd.	#3	0.0116	mm	40.9
AASHTO T88	Hyd. Rd.	#4	0.0082	mm	39.0
AAS	Hyd. Rd.	# 5	0.0058	mm	37.3
	Hyd. Rd.	#6	0.0029	mm	30.8
	Hyd. Rd.	#7	0.0012	mm	26.8
000	0				

 $D_{50} = 0.0299 \text{ mm}$

CBR (AASHTO: T-193) : 3 Dry Dens. (AASHTO: T-99; Method (A)) : 110 pcf Opt. Moist. (AASHTO: T-99; Method (A)) : 17 %

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.2

Coarse Sand (-No.10 + No.40) : 0.2

Fine Sand (-No.40 + No.200) : 34.5

- Silt (-No.200 + 0.002mm) : 36.0
 - $Clay\;(\;\text{-}0.002mm + 0.001mm\;) \;\;:\;\; 4.5$
 - Colloids (-0.001mm) : 24.6

Approved By : 02C

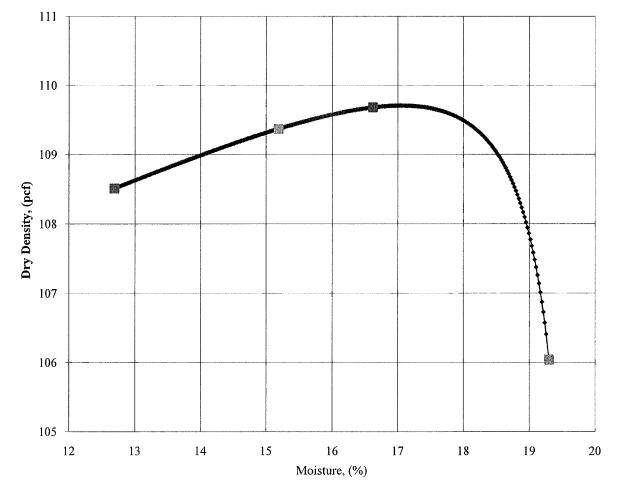
Natural Moisture (%) (AASHTO T265) : 10.2

Liquid Limit (AASHTO T89) : 30

Plastic Limit (AASHTO T90) : 15

- Plasticity Index : 15
 - Liquidity Index : -0.31

Activity : 0.52


- Sp. Gr. (AASHTO T100) : 2.679
- AASHTO Classification: M145 : A-6 (7)
 - ASTM Classification: D2487 : CL

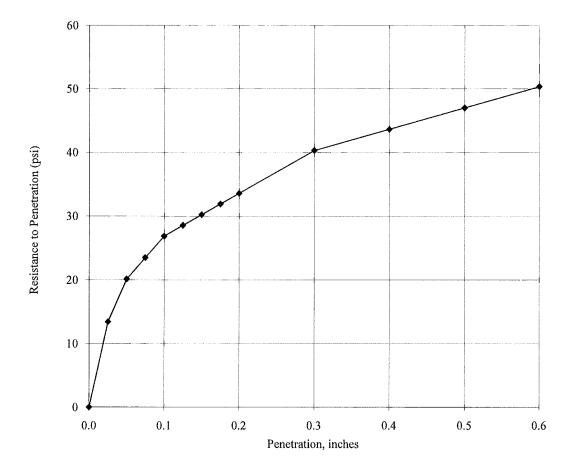
Soil No. 6

MOISTURE-DENSITY RELATIONSHIP

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 6
Project County	:	Haywood	Sample Loc.	:	Boring No. 12
Project State	:	Tennessee	Sample Depth	:	15.0' to 38.0'
Laboratory No.	:	10217	Date Tested	:	10-28-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	:	Gray Sandy Lean Clay			

MAXIMUM DENSITY: 110 pcf

OPTIMUM MOISTURE: 17 %


COMMENTS: AASHTO: T-99; Method (A)

APPROVED BY: DLC

PuH	Florence & Hutcheson
	CONSULTING ENGINEERS

CALIFORNIA BEARING RATIO

Project Name :	Solar Farm Information & Welcome	Center Site Design
Project No. :	38001-1684-0438001-1684-04	Sample No. : Bag No. 6
Project County :	Haywood	Sample Loc. : Boring No. 12
Project State :	Tennessee	Sample Depth : 15.0' to 38.0'
Laboratory No. :	10217	Date Tested : 10-28-10
Submitted By :	Florence & Hutcheson	Date Reported : 11-22-10
Soil Type :	Gray Sandy Lean Clay	

Compaction Effort = 65 Blows per layer Percent Compacted = 99.3 Percent Swell = 0.61

C.B.R. @ 0.1 In. = 2.7* C.B.R. @ 0.2 In. = 2.2

COMMENTS: AASHTO: T-193

APPROVED BY: DLC

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	: 5	Solar Farm Information & Welcome Center Site Design			
Project No.	: 3	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 7
Project County	: 1	Haywood	Sample Loc.	:	Boring No. 13
Project State	: 7	Tennessee	Sample Depth	;	40.0' to 50.0'
Laboratory No.	: 1	10217	Date Tested	:	10-28-10
Submitted By	: I	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	: (Orange Silty Sand	_		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	100.0
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	99.3
1/4		6.3	mm	
No.4		4.75	mm	98.9
No.6		3.35	mm	
No.10		2	mm	98.5
				a

% Passing

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	98.2
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	16.8
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0332	mm	15.6
	Hyd. Rd.	#2	0.0211	mm	14.6
AASHTO T88	Hyd. Rd.	#3	0.0122	mm	13.6
нто	Hyd. Rd.	#4	0.0087	mm	13.1
AAS	Hyd. Rd.	# 5	0.0062	mm	11.7
	Hyd. Rd.	#6	0.0030	mm	10.8
	Hyd. Rd.	#7	0.0013	mm	5.9
~~	2				

 $D_{50} = 0.1522 \text{ mm}$

CBR (AASHTO: T-193) : 21

Dry Dens. (AASHTO: T-99; Method (C)) : 112 pcf Opt. Moist. (AASHTO: T-99; Method (C)) : 12 %

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 1.5

- Coarse Sand (-No.10 + No.40) : 0.3
- Fine Sand (-No.40 + No.200) : 81.4 Silt (-No.200 + 0.002mm) : 8.4
 - Clay(-0.002mm + 0.001mm) : 3.1
 - Colloids (-0.001mm) : 5.3

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0

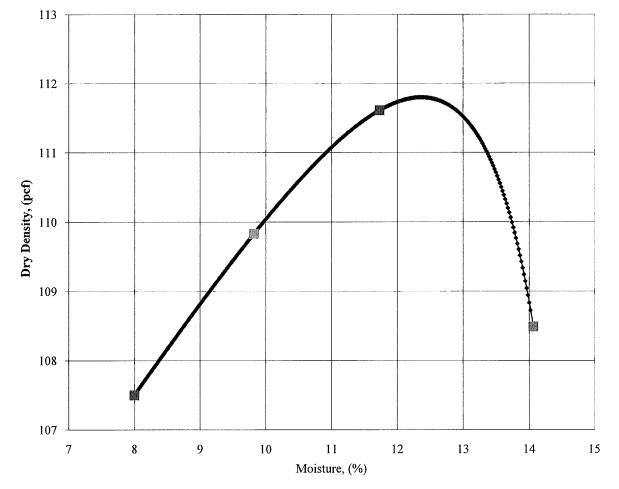
- Fine Gravel (-3/4in. + No.4) : 1.1
- Coarse Sand (-No.4 + No.10) : 0.4
- Medium Sand (-No.10 + No.40) : 0.3
 - Fine Sand (-No.40 + No.200) : 81.4
 - Silt (-No.200 + 0.005mm) : 5.3
 - Clay (-0.005mm + 0.001mm) : 6.2 Colloids (-0.001mm) : 5.3

Approved By : **b**k

Natural Moisture (%) (AASHTO T265) : 9.2

Liquid Limit (AASHTO T89) : NP

Plastic Limit (AASHTO T90) : NP


- Plasticity Index : NP
- Liquidity Index : NA
 - Activity : NA
- Sp. Gr. (AASHTO T100) : 2.620
- AASHTO Classification: M145 : A-2-4 (0)
- ASTM Classification: D2487 : SM

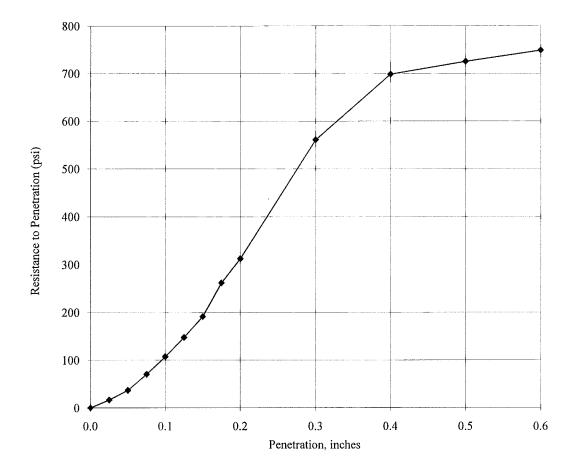
Soil	No.	7

MOISTURE-DENSITY RELATIONSHIP

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	Bag No. 7
Project County	;	Haywood	Sample Loc.	:	Boring No. 13
Project State	:	Tennessee	Sample Depth	:	40.0' to 50.0'
Laboratory No.	:	10217	Date Tested	:	10-28-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-22-10
Soil Type	:	Orange Silty Sand			

MAXIMUM DENSITY: 112 pcf

OPTIMUM MOISTURE: 12 %


COMMENTS: AASHTO: T-99; Method (C)

APPROVED BY: **b**_LC

Ra	Florence & Hutcheson
	CONSULTING ENGINEERS

CALIFORNIA BEARING RATIO

Project Name	: Solar Farm Information & Welcome	Center Site Design
Project No.	: 38001-1684-0438001-1684-04	Sample No. : Bag No. 7
Project County	: Haywood	Sample Loc. : Boring No. 13
Project State	: Tennessee	Sample Depth: 40.0' to 50.0'
Laboratory No.	: 10217	Date Tested : 10-28-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-22-10
Soil Type	: Orange Silty Sand	

Compaction Effort = 65 Blows per layer Percent Compacted = 100.6 Percent Swell = 0.02

C.B.R. @ 0.1 In. = 10.7 C.B.R. @ 0.2 In. = 20.8*

COMMENTS: AASHTO: T-193

APPROVED BY: DCC

CONSULTING ENGINEERS

SOIL CLASSIFICATION

		Ú.	
Project Name	: Solar Farm Information & Welcome Center Site Design		
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: ST - 1
Project County :	: Haywood	Sample Loc.	: Boring No. 47
Project State :	Tennessee	Sample Depth	: 15.0' to 17.0'
Laboratory No.	: 10217	Date Tested	: 11-15-10
Submitted By	Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	: Light Gray & Tan Sandy Lean Clay		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				n

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay (-0.002 mm + 0.001 mm) : 5.2

Colloids (-0.001mm) : 17.5

Coarse Sand (-No.10 + No.40) : 0.2 Fine Sand (-No.40 + No.200) : 41.0

Silt (-No.200 + 0.002mm) : 36.1

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.8
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	58.8
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0319	mm	40.8
	Hyd. Rd.	#2	0.0203	mm	38.7
ASHTO T88	Hyd. Rd.	#3	0.0119	mm	33.5
нто	Hyd. Rd.	#4	0.0085	mm	31.5
AAS	Hyd. Rd.	#5	0.0060	mm	30.5
	Hyd. Rd.	#6	0.0030	mm	25.6
	Hyd. Rd.	#7	0.0013	mm	19.4
'					

 $D_{50} = 0.0494 \text{ mm}$

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

Natural Moisture (%) (AASHTO T265) : 24.1

Liquid Limit (AASHTO T89) : 34

- Plastic Limit (AASHTO T90) : 20
 - Plasticity Index : 14
 - Liquidity Index : 0.30
 - Activity : 0.62
 - Sp. Gr. (AASHTO T100) : 2.635
- AASHTO Classification: M145 : A-6 (6)
 - ASTM Classification: D2487 : CL

Coarse Sand ($-No.4 + No.10$) : 0.0	
Medium Sand (-No.10 + No.40) : 0.2	
Fine Sand (-No.40 + No.200) : 41.0	
Silt (-No.200 + 0.005mm) : 29.6	
Clay $(-0.005 \text{ mm} + 0.001 \text{ mm})$: 11	.8
Colloids (-0.001mm) : 17	.5
Approved By : buc	

Soil No. 8

CONSULTING ENGINEERS

SOIL CLASSIFICATION

_													
	Project Name : Solar Farm Information & Welcome Center Site Design												
	Project No. : 38001-1684-0438001-1684-04									Sample No.	: ST	`-2	
	Projec	t County	y : Ha	ıywood					1	Sample Loc.	: Bo	ring No. 47	
Project State : Tennessee							Sa	imple Depth	: 20	.0' to 21.7'			
	Labor	atory No	. : 10	217						Date Tested	: 11-	-15-10	
	Subr	nitted By	/ : Flo	orence & Hu	itcheso	n			Date Reported : 11-23-10				
	5	Soil Type	e : Be	ige & Yello	wish O	range Lean (Clay with	Sand		-			
A	ASHT	O T27 :											
% Passing % Passing													
		4	in.	101.6	mm			No.16		1.18	mm]
		3.5	in.	88.9	mm			No.30		0.6	mm]
		3	in	76.2	mm			$N_0 40$		0.425	mm	100.0	1

3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D.

AASHTO Composition of Total Sample: M145

Clay(-0.002mm + 0.001mm) : 6.0

Colloids (-0.001mm) : 25.4

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.0

Fine Sand (-No.40 + No.200) : 20.1

Silt (-No.200 + 0.002mm) : 48.5

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	100.0
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	79.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0301	mm	60.1
	Hyd. Rd.	#2	0.0195	mm	54.0
AASHTO T88	Hyd. Rd.	#3	0.0116	mm	46.7
E H	Hyd. Rd.	#4	0.0083	mm	42.6
AAS	Hyd. Rd.	# 5	0.0059	mm	39.8
	Hyd. Rd.	#6	0.0029	mm	34.3
	Hyd, Rd.	#7	0.0012	mm	27.8
	(

 $D_{50} = 0.0146 \text{ mm}$

 $CBR \ : \ NA$

Dry Dens. : NA

Opt. Moist. : NA

Natural Moisture (%) (AASHTO T265) : 26.1

Liquid Limit (AASHTO T89) : 42

- Plastic Limit (AASHTO T90) : 20
 - Plasticity Index : 22
 - Liquidity Index : 0.29
 - Activity : 0.70
 - Sp. Gr. (AASHTO T100) : 2.618
- AASHTO Classification: M145 : A-7-6 (17)
 - ASTM Classification: D2487 : CL

ASTM Composition of Total Sample: D2487
Coarse Gravel ($3in. + 3/4in.$) : 0.0
Fine Gravel ($-3/4$ in. + No.4) : 0.0
Coarse Sand ($-No.4 + No.10$) : 0.0
Medium Sand ($-No.10 + No.40$) : 0.0
Fine Sand (-No.40 + No.200) : 20.1
Silt ($-No.200 + 0.005mm$) : 41.4
Clay(-0.005mm + 0.001mm) : 13.2

OLL

Colloids (-0.001mm) : 25.4

Approved By :

Soil No. 9

Florence & Hutcheson

CONSULTING ENGINEERS

0/ D

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site D	esign
Project No.	: 38001-1684-0438001-1684-04	Sample No. : ST - 3
Project County	: Haywood	Sample Loc. : Boring No. 47
Project State	: Tennessee	Sample Depth : 40.0' to 42.0'
Laboratory No.	: 10217	Date Tested : 11-15-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-23-10
Soil Type	: Gray Lean Clay with Sand	

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D.

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	75.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0305	mm	56.1
	Hyd. Rd.	#2	0.0196	mm	51.0
) T88	Hyd. Rd.	#3	0.0116	mm	45.9
AASHTO T88	Hyd. Rd.	#4	0.0083	mm	40.8
AAS	Hyd. Rd.	#5	0.0059	mm	37.0
	Hyd. Rd.	#6	0.0030	mm	30.2
	Hyd. Rd.	#7	0.0013	mm	22.0
117	6				

$D_{50} = 0.0176 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 16.7

Liquid Limit (AASHTO T89) : 29

- Plastic Limit (AASHTO T90) : 15
 - Plasticity Index : 14
 - Liquidity Index : 0.14
 - Activity : 0.53
 - Sp. Gr. (AASHTO T100) : 2.632
- AASHTO Classification: M145 : A-6 (8)
 - ASTM Classification: D2487 : CL

Coarse Gravel ($3in. + 3/4in.$) : 0.0	
Fine Gravel $(-3/4in. + No.4)$: 0.0	
Coarse Sand (-No.4 + No.10) : 0.0	
Medium Sand (-No.10 + No.40) $: 0.1$	
Fine Sand (-No.40 + No.200) : 24.0	
Silt ($-No.200 + 0.005mm$) : 40.6	
Clay (-0.005 mm + 0.001 mm) :	15.3
Colloids (-0.001mm) :	20.0

Approved By :

10 Soil No.

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

- CBR : NA Dry Dens. : NA
- Opt. Moist. : NA
- AASHTO Composition of Total Sample: M145 Gravel (3in. + No.10) : 0.0
- Coarse Sand (-No.10 + No.40) : 0.1
- Fine Sand (-No.40 + No.200) : 24.0
 - Silt (-No.200 + 0.002mm) : 49.5
 - Clay(-0.002mm + 0.001mm) : 6.4

ASTM Composition of Total Sample: D2487

DLC

Colloids (-0.001mm) : 20.0

Florence & Hutcheson *****

CONSULTING ENGINEERS

SOIL CLASSIFICATION

			UN		
Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 2
Project County	:	Haywood	Sample Loc.	:	Boring No. 51
Project State	:	Tennessee	Sample Depth	:	20.4' to 21.9'
Laboratory No.	:	10217	Date Tested	:	11-13-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Reddish Orange Silty Sand			

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6,3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
			-	Л

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	18.6
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0325	mm	17.0
	Hyd. Rd.	#2	0.0206	mm	16.5
T88	Hyd. Rd.	#3	0.0119	mm	16.5
AASHTO T88	Hyd. Rd,	#4	0.0084	mm	16.0
AAS	Hyd. Rd.	#5	0.0060	mm	15.0
	Hyd. Rd.	#6	0.0029	mm	14.2
	Hyd. Rd.	#7	0.0012	mm	13.8
46	5 mm				

 $D_{50} = 0.1466 \text{ mm}$

- CBR : NA
- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0 Coarse Sand (-No.10 + No.40) : 0.1 Fine Sand (-No.40 + No.200) : 81.3

Silt (-No.200 + 0.002mm) : 4.6

Clay(-0.002mm + 0.001mm) : 1.4Colloids (-0.001mm) : 12.7

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0Medium Sand $(-N_{0.10} + N_{0.40})$: 0.1 Fine Sand (-No.40 + No.200) : 81.3 Silt (-No.200 + 0.005mm) : 3.8 Clay (-0.005mm + 0.001mm) : 2.1 Colloids (-0.001mm) : 12.7

DC

Approved By :

Natural Moisture (%) (AASHTO T265) : 12.7

Liquid Limit (AASHTO T89) : NP

- Plastic Limit (AASHTO T90) : NP
 - Plasticity Index : NP
 - Liquidity Index : NA
 - Activity : NA
 - Sp. Gr. (AASHTO T100) : 2.652
- AASHTO Classification: M145 : A-2-4 (0)
 - ASTM Classification: D2487 : SM

Soil No. 11

CONSULTING ENGINEERS

0/ Densine

SOIL CLASSIFICATION

Project Name :	Solar Farm Information & Welcome Center Site Design		
Project No. :	38001-1684-0438001-1684-04	Sample No.	: ST - 3
Project County :	Haywood	Sample Loc.	: Boring No. 51
Project State :	Tennessee	Sample Depth	: 24.0' to 25.5'
Laboratory No. :	10217	Date Tested	: 11-13-10
Submitted By :	Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type :	Reddish Orange Poorly Graded Sand with Silt	-	
AASHTO T27 ·			

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3,35	mm	
No.10		2	mm	100.0
				D

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay(-0.002mm + 0.001mm) : 1.1Colloids (-0.001mm) : 5.9

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 1.6

olc

Coarse Sand (-No.10 + No.40) : 1.6

Fine Sand (-No.40 + No.200) : 88.9

Silt (-No.200 + 0.002mm) : 2.6

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	98.4
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	9.5
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0337	mm	9.7
	Hyd. Rd.	#2	0.0214	mm	9.2
T88	Hyd. Rd.	#3	0.0124	mm	9.2
AASHTO T88	Hyd. Rd.	#4	0.0088	mm	8.7
AAS	Hyd. Rd.	# 5	0.0062	mm	8.3
	Hyd. Rd.	#6	0.0030	mm	7.3
	Hyd. Rd.	#7	0.0013	mm	6.5
c .	0				

$D_{50} = 0.1649 \text{ mm}$

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

Natural Moisture (%) (AASHTO T265) : 9.8

Liquid Limit (AASHTO T89) : NP

Plastic Limit (AASHTO T90) : NP

- Plasticity Index : NP
- Liquidity Index : NA
 - Activity : NA
- Sp. Gr. (AASHTO T100) : 2.656
- AASHTO Classification: M145 : A-2-4 (0)
- ASTM Classification: D2487 : SP-SM

Fine Sand (-No.40 + No.200) : 88.9		
Silt (-No.200 + 0.005mm) : 1.5		
Clay (-0.005 mm + 0.001 mm) :	2.1	
Colloids (-0.001mm) :	5.9	
$(\mathbf{R}_{\mathbf{V}}, \mathbf{h})$		

Approved By :

Soil No. 12

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	Solar Farm Information &	Welcome Center Site Design	
Project No.	38001-1684-0438001-168	S4-04 Sample No.	: ST - 1
Project County	Haywood	Sample Loc.	: Boring No. 55
Project State	Tennessee	Sample Depth	: 19.5' to 21.3'
Laboratory No.	10217	Date Tested	: 11-13-10
Submitted By	Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	Multicolor Sandy Lean C	lay	

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.8
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	54.8
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0316	mm	40.6
	Hyd. Rd.	#2	0.0202	mm	37.5
T88	Hyd. Rd.	#3	0.0118	mm	34.4
AASHTO T88	Hyd. Rd.	#4	0.0084	mm	32.4
AAS	Hyd. Rd.	# 5	0.0060	mm	30.2
	Hyd. Rd.	#6	0.0029	mm	26.6
	Hyd. Rd.	#7	0.0012	mm	21.7

 $D_{50} = 0.056 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 14.5

Liquid Limit (AASHTO T89) : 31

Plastic Limit (AASHTO T90) : 19

- Plasticity Index : 12
- Liquidity Index : -0.34
 - Activity : 0.49
- Sp. Gr. (AASHTO T100) : 2.659
- AASHTO Classification: M145 : A-6 (4)
- ASTM Classification: D2487 : CL

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0

- Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0
- Medium Sand (-No.10 + No.40) : 0.2
 - Fine Sand (-No.40 + No.200) : 45.0
 - Silt (-No.200 + 0.005mm) : 25.5
 - Clay (-0.005mm + 0.001mm) : 9.4 Colloids (-0.001mm) : 19.9

Approved By : **b**

Soil No. 13

- CBR : NA
- Dry Dens. : NA
- Opt. Moist. : NA
- AASHTO Composition of Total Sample: M145
 - Gravel (3in. + No.10) : 0.0
- Coarse Sand (-No.10 + No.40) : 0.2
- Fine Sand (-No.40 + No.200) : 45.0
 - Silt (-No.200 + 0.002mm) : 30.4
 - Clay (-0.002mm + 0.001mm) : 4.5 Colloids (-0.001mm) : 19.9

CONSULTING ENGINEERS

SOIL CLASSIFICATION

				_	
Project Name	:	Solar Farm Information & Welcome Center Site Design	·		
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	SS - 11 thru 17
Project County	:	Haywood	Sample Loc.	:	Boring No. 55
Project State	:	Tennessee	Sample Depth	:	54.5' to 86.0'
Laboratory No.	:	10217	Date Tested	:	11-15-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	;	Tan & Beige Well-Graded Sand with Silt	-		
AASHTO T27 :					

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.6
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	11.8
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0352	mm	10.6
	Hyd. Rd.	#2	0.0223	mm	9.8
AASHTO T88	Hyd. Rd.	#3	0.0130	mm	6.6
HTC	Hyd. Rd.	#4	0.0092	mm	6.7
AAS	Hyd. Rd.	# 5	0.0065	mm	5.9
	Hyd. Rd.	#6	0.0032	mm	4.3
	Hyd. Rd.	#7	0.0013	mm	1.9

 $D_{50} = 0.1595 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 23

Dry Dens. : NA Liqui

Opt. Moist. : NA

CBR : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.4

Fine Sand (-No.40 + No.200) : 87.8

- Silt (-No.200 + 0.002mm) : 8.8
 - Clay (-0.002mm + 0.001mm) : 1.3
 - Colloids (-0.001mm) : 1.7

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 0.4 Fine Sand (-No.40 + No.200) : 87.8 Silt (-No.200 + 0.005mm) : 6.5 Clay (-0.005mm + 0.001mm) : 3.6 Colloids (-0.001mm) : 1.7

Approved By : **b**LC

Liquid Limit (AASHTO T89) : NP

Plastic Limit (AASHTO T90) : NP

- Plasticity Index : NP
- Liquidity Index : NA

A otivity N

Activity : NA

- Sp. Gr. (AASHTO T100) : 2.623
- AASHTO Classification: M145 : A-2-4 (0)
- ASTM Classification: D2487 : SW-SM

Soil No. 14

Florence & Hutcheson

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	SS - 18, 19 & 20
Project County	:	Haywood	Sample Loc.	:	Boring No. 55
Project State	:	Tennessee	Sample Depth	:	89.5' to 101.0'
Laboratory No.	:	10217	Date Tested	:	11-15-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Tan Poorly Graded Sand	i		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	99.9
				n

					% Passing			
	No.16		1.18	mm				
	No.30		0.6	mm				
	No.40		0.425	mm	44.4			
	No.50		0.3	mm				
	No.60		0.25	mm				
	No.80		0.18	mm				
	No.100		0.15	mm				
	No.200		0.075	mm	4.3			
	No.270		0.053	mm				
	Hyd. Rd.	#1	0.0357	mm	2.7			
	Hyd. Rd.	#2	0.0225	mm	2.8			
AASHTO T88	Hyd. Rd.	#3	0.0130	mm	2.2			
HT0	Hyd. Rd.	#4	0.0092	mm	1.8			
AAS	Hyd. Rd.	#5	0.0065	mm	1.8			
	Hyd. Rd.	#6	0.0032	mm	1.4			
	Hyd. Rd.	#7	0.0013	mm	0.9			
~	(0 ,							

 $D_{50} = 0.4969 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 21

Liquid Limit (AASHTO T89) : NP

- Plastic Limit (AASHTO T90) : NP
 - Plasticity Index : NP
 - Liquidity Index : NA
 - Activity : NA
 - Sp. Gr. (AASHTO T100) : 2.635
- AASHTO Classification: M145 : A-1-b (0)
 - ASTM Classification: D2487 : SP

Fine Gravel (-3/4in. + No.4) : 0.0		
Coarse Sand ($-No.4 + No.10$) : 0.1		
Medium Sand ($-No.10 + No.40$) : 55.5		
Fine Sand ($-No.40 + No.200$) : 40.1		
Silt ($-No.200 + 0.005mm$) : 2.6		
Clay (-0.005 mm + 0.001 mm) :	0.9	
Colloids (-0.001mm) :	0.8	
Approved By : hcc		

Soil No. 15

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

CBR : NA

- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.1

Coarse Sand (-No.10 + No.40) : 55.5

Fine Sand (-No.40 + No.200) : 40.1

- Silt (-No.200 + 0.002mm) : 3.2
 - Clay (-0.002 mm + 0.001 mm) : 0.3 Colloids (-0.001mm) : 0.8

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0

A

CONSULTING ENGINEERS

0/ D '

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	SS - 1 & 2
Project County	:	Haywood	Sample Loc.	:	Boring No. 59
Project State	:	Tennessee	Sample Depth	:	4.1' to 10.6'
Laboratory No.	:	10217	Date Tested	:	11-16-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Brown Lean Clay	_		
	-				

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	99.9
				n

AASHTO Composition of Total Sample: M145

Colloids (-0.001mm) : 20.2

Gravel (3in. + No.10) : 0.1

Coarse Sand (-No.10 + No.40) : 1.8

Fine Sand (-No.40 + No.200) : 6.3

Silt (-No.200 + 0.002mm) : 67.7 Clay (-0.002mm + 0.001mm) : 3.9 % Passing

					% Passing			
	No.16		1.18	mm				
	No.30		0.6	mm				
	No.40		0.425	mm	98.1			
	No.50		0.3	mm				
	No.60		0.25	mm				
	No.80		0.18	mm				
	No.100		0.15	mm				
	No.200		0.075	mm	91.8			
	No.270		0.053	mm				
	Hyd. Rd.	#1	0.0280	mm	72.2			
	Hyd. Rd.	#2	0.0188	mm	58.0			
T88	Hyd. Rd.	#3	0.0114	mm	42.8			
AASHTO T88	Hyd. Rd.	#4	0.0082	mm	36.8			
AAS	Hyd. Rd.	# 5	0.0059	mm	32.5			
	Hyd. Rd.	#6	0.0029	mm	25.7			
	Hyd. Rd.	#7	0.0012	mm	22.2			
111	145 mm							

$D_{50} = 0.0145 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 30.3

Liquid Limit (AASHTO T89) : 34

- Plastic Limit (AASHTO T90) : 21
 - Plasticity Index : 13
 - Liquidity Index : 0.68
 - Activity : 0.54
 - Sp. Gr. (AASHTO T100) : 2.673
- AASHTO Classification: M145 : A-6 (12)
 - ASTM Classification: D2487 : CL

ASTM Composition of Total Sample: D2487
Coarse Gravel ($3in. + 3/4in.$) : 0.0
Fine Gravel $(-3/4in. + No.4)$: 0.0
Coarse Sand ($-No.4 + No.10$) : 0.1
Medium Sand (-No.10 + No.40) $: 1.8$
Fine Sand (-No.40 + No.200) : 6.3
Silt ($-No.200 + 0.005mm$) : 60.9
Clay (-0.005 mm + 0.001 mm) : 10.6
Colloids (-0.001mm) : 20.2

pic

Approved By :

Soil No. 16

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 1
Project County	:	Haywood	Sample Loc.	:	Boring No. 56
Project State	:	Tennessee	Sample Depth	:	19.5' to 20.4'
Laboratory No.	:	10217	Date Tested	:	11-13-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Orange Lean Clay with Sand	_		×

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				n

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay (-0.002 mm + 0.001 mm) : 7.1

Colloids (-0.001mm) : 22.1

Coarse Sand (-No.10 + No.40) : 3.0

Fine Sand (-No.40 + No.200) : 24.3

Silt (-No.200 + 0.002mm) : 43.5

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	97.0
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	72.7
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0288	mm	57.2
	Hyd. Rd.	#2	0.0185	mm	53.0
AASHTO T88	Hyd. Rd.	#3	0.0109	mm	47.0
HTO	Hyd. Rd.	#4	0.0078	mm	43.2
AAS	Hyd. Rd.	#5	0.0056	mm	38.2
	Hyd. Rd.	#6	0.0028	mm	32.7
	Hyd. Rd.	#7	0.0012	mm	23.8
1 4	2 mm				

 $D_{50} = 0.0142 \text{ mm}$

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

Natural Moisture (%) (AASHTO T265) : 31.1

- Liquid Limit (AASHTO T89) : 45
- Plastic Limit (AASHTO T90) : 22
 - Plasticity Index : 23
 - Liquidity Index : 0.41
 - Activity : 0.79
 - Sp. Gr. (AASHTO T100) : 2.766
- AASHTO Classification: M145 : A-7-6 (16)
- ASTM Classification: D2487 : CL

ASTM Composition of Total Sample: D2487
Coarse Gravel ($3in. + 3/4in.$) : 0.0
Fine Gravel $(-3/4in. + No.4) = 0.0$
Coarse Sand ($-No.4 + No.10$) : 0.0
Medium Sand ($-No.10 + No.40$) : 3.0
Fine Sand (-No.40 + No.200) : 24.3
Silt (-No.200 + 0.005mm) : 35.4
Clay $(-0.005 \text{mm} + 0.001 \text{mm})$: 15.2
Colloids (-0.001mm) : 22.1

Approved By :

DUL

Soil No. 17

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design	n		
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 2
Project County	:	Haywood	Sample Loc.	:	Boring No. 56
Project State	:	Tennessee	Sample Depth	:	24.5' to 26.0'
Laboratory No.	:	10217	Date Tested	:	11-13-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Light Gray & Reddish Orange Silty, Clayey Sand			
A A SHTO T27 ·				-	

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	42.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0329	mm	29.2
	Hyd. Rd.	#2	0.0209	mm	27.3
T88	Hyd. Rd.	#3	0.0122	mm	25.3
AASHTO T88	Hyd. Rd.	#4	0.0087	mm	22.3
AAS	Hyd. Rd.	#5	0.0062	mm	20.2
	Hyd, Rd,	#6	0.0030	mm	15.5
	Hyd. Rd.	#7	0.0013	mm	12.3
<u></u>	-		· · · · ·		

 $D_{50} = 0.0931 \text{ mm}$

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

Natural Moisture (%) (AASHTO T265) : 13.3

Liquid Limit (AASHTO T89) : 26

- Plastic Limit (AASHTO T90) : 20
 - Plasticity Index : 6
 - Liquidity Index : -1.05
 - Activity : 0.43
- Sp. Gr. (AASHTO T100) : 2.647
- AASHTO Classification: M145 : A-4 (0)
- ASTM Classification: D2487 : SC-SM

ASTM Composition of Total Sample: D2487

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay (-0.002 mm + 0.001 mm) : 2.8

Colloids (-0.001mm) : 11.1

Coarse Gravel (3in. + 3/4in.) : 0.0

Coarse Sand (-No.10 + No.40) : 0.1

Fine Sand (-No.40 + No.200) : 57.0 Silt (-No.200 + 0.002mm) : 29.0

- Fine Gravel (-3/4in. + No.4) : 0.0
- Coarse Sand (-No.4 + No.10) : 0.0
- Medium Sand (-No.10 + No.40) : 0.1
 - Fine Sand (-No.40 + No.200) : 57.0
- Silt (-No.200 + 0.005mm) : 24.1
 - Clay (-0.005 mm + 0.001 mm) : 7.7
 - Colloids (-0.001mm) : 11.1

Approved By : blc Soil No. 18

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 3
Project County	:	Haywood	Sample Loc.	:	Boring No. 56
Project State	:	Tennessee	Sample Depth	:	34.5' to 36.1'
Laboratory No.	:	10217	Date Tested	:	11-13-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Light Gray Silt with Sand			

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay(-0.002mm + 0.001mm) : 5.5

Colloids (-0.001mm) : 22.9

Coarse Sand (-No.10 + No.40) : 0.0

Fine Sand (-No.40 + No.200) : 22.0

Silt (-No.200 + 0.002mm) : 49.5

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	100.0
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	78.0
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0294	mm	59.3
	Hyd. Rd.	#2	0.0191	mm	53.2
AASHTO T88	Hyd. Rd.	#3	0.0114	mm	45.1
нто	Hyd. Rd.	#4	0.0081	mm	41.2
AAS	Hyd. Rd.	# 5	0.0058	mm	37.4
	Hyd. Rd.	#6	0.0029	mm	31.1
	Hyd. Rd.	#7	0.0012	mm	24.9
015	6 mm				

 $D_{50} = 0.0156 \text{ mm}$

CBR : NA

Dry Dens. : NA Opt. Moist. : NA Natural Moisture (%) (AASHTO T265) : 17.8

Liquid Limit (AASHTO T89) : 37

- Plastic Limit (AASHTO T90) : 33
 - Plasticity Index : 4
 - Liquidity Index : -3.76
 - Activity : 0.14
 - Sp. Gr. (AASHTO T100) : 2.672
- AASHTO Classification: M145 : A-4 (4)
- ASTM Classification: D2487 : ML

ASTM Composition of Total Sample: D2	2487
Coarse Gravel ($3in. + 3/4in.$) : 0.0	
Fine Gravel $(-3/4in. + No.4)$: 0.0	
Coarse Sand (-No.4 + No.10) : 0.0	
Medium Sand (-No.10 + No.40) : 0.0	
Fine Sand ($-No.40 + No.200$) : 22.0	
Silt ($-No.200 + 0.005mm$) : 42.0	
Clay (-0.005mm + 0.001mm) :	13.1
Colloids (-0.001mm) :	22.9

Approved By : DLC

Soil No. 19

CONSULTING ENGINEERS

0/ Degaine

SOIL CLASSIFICATION

·····					
Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 4
Project County	:	Haywood	Sample Loc.	:	Boring No. 56
Project State	:	Tennessee	Sample Depth	:	39.5' to 41.2'
Laboratory No.	:	10217	Date Tested	:	11-13-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Light Gray Lean Clay with Sand			

AASHTO T27 :

<u>% Passing</u>							
4	in.	101.6	mm				
3.5	in.	88.9	mm				
3	in.	76.2	mm				
2.5	in.	63.5	mm				
2	in.	50.8	mm				
1 3/4	in.	45	mm				
1 1/2	in.	38.1	mm				
1 1/4	in.	31.5	mm				
1	in.	25	mm				
3/4	in.	19	mm				
1/2	in.	12.5	mm				
3/8	in.	9.5	mm				
1/4		6.3	mm				
No.4		4.75	mm	100.0			
No.6		3.35	mm				
No.10		2	mm	100.0			
				n			

% Passing No.16 1.18 mm No.30 0.6 mm No.40 0.425 mm 100.0 No.50 0.3 mm 0.25 No.60 mm No.80 0.18 mm No.100 0.15 mm No.200 0.075 mm 81.8 No.270 0.053 mm Hyd. Rd. #1 0.0298 58.4 mm Hyd. Rd. #2 0.0192 53.3 mm Hyd. Rd. #3 0.0114 45.4 mm #4 Hyd. Rd. 0.0082 41.3 mm Hyd. Rd. #5 0.0058 37.4 mm Hyd. Rd. #6 0.0030 26.5 mm #7 0.0013 18.7 Hyd. Rd. mm

 $D_{50} = 0.0154 \text{ mm}$

AASHTO T88

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.0

Fine Sand (-N0.40 + N0.200) : 18.2

Silt (-No.200 + 0.002mm) : 58.8

Clay (-0.002mm + 0.001mm) : 5.9 Colloids (-0.001mm) : 17.1

Conolds (-0.00111111) . 17.

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 0.0 Fine Sand (-No.40 + No.200) : 18.2 Silt (-No.200 + 0.005mm) : 46.8 Clay (-0.005mm + 0.001mm) : 17.9 Colloids (-0.001mm) : 17.1

DLC

Approved By :

Soil No. 20

- Natural Moisture (%) (AASHTO T265) : 17.4
 - Liquid Limit (AASHTO T89) : 24
 - Plastic Limit (AASHTO T90) : 14
 - Plasticity Index : 10
 - Liquidity Index : 0.35
 - Activity : 0.44
 - Sp. Gr. (AASHTO T100) : 2.650
 - AASHTO Classification: M145 : A-4 (6)
 - ASTM Classification: D2487 : CL

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design	1	
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: ST - 5
Project County	: Haywood	Sample Loc.	: Boring No. 56
Project State	: Tennessee	Sample Depth	: 44.5' to 45.0'
Laboratory No.	: 10217	Date Tested	: 11-13-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	: White & Yellowish Orange Poorly Graded Sand with S	ilt	,
AASHTO T27 :			
	0/ Dogging		0/ Degaine

% Passing							
4	in.	101.6	mm				
3.5	in.	88.9	mm				
3	in.	76.2	mm				
2.5	in.	63.5	mm				
2	in.	50.8	mm				
1 3/4	in.	45	mm				
1 1/2	in.	38.1	mm				
1 1/4	in.	31.5	mm				
1	in.	25	mm				
3/4	in.	19	mm				
1/2	in.	12.5	mm				
3/8	in.	9.5	mm	100.0			
1/4		6.3	mm				
No.4		4.75	mm	99.9			
No.6		3.35	mm				
No.10		2	mm	99.9			
				Л			

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.4
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	11.1
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0339	mm	9.6
	Hyd. Rd.	#2	0.0214	mm	9.6
T88	Hyd. Rd.	#3	0.0125	mm	8.2
AASHTO T88	Hyd. Rd.	#4	0.0089	mm	6.6
AAS	Hyd. Rd.	# 5	0.0063	mm	6.2
	Hyd. Rd.	#6	0.0031	mm	4.9
	Hyd. Rd.	#7	0.0013	mm	2.9
1 ~ 1					

$D_{50} = 0.161 \text{ mm}$

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.1

- Coarse Sand (-No.10 + No.40) : 0.5
- Fine Sand (-No.40 + No.200) : 88.3
 - Silt (-No.200 + 0.002mm) : 7.2
 - Clay (-0.002mm + 0.001mm) : 1.3
 - Colloids (-0.001mm) : 2.6

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.1 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 0.5 Fine Sand (-No.40 + No.200) : 88.3 Silt (-No.200 + 0.005mm) : 5.3 Clay (-0.005mm + 0.001mm) : 3.2 Colloids (-0.001mm) : 2.6

DLC

Approved By :

Natural Moisture (%) (AASHTO T265) : 15.8

Liquid Limit (AASHTO T89) : NP

- Plastic Limit (AASHTO T90) : NP
 - Plasticity Index : NP
 - Liquidity Index : NA
 - Activity : NA
 - Sp. Gr. (AASHTO T100) : 2.642
- AASHTO Classification: M145 : A-2-4 (0)
- ASTM Classification: D2487 : SP-SM

Soil No. 21

CONSULTING ENGINEERS

0/ Densing

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design	ł	
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: ST - 1
Project County	: Haywood	Sample Loc.	: Boring No. 57
Project State	: Tennessee	Sample Depth	: 14.9' to 15.5'
Laboratory No.	: 10217	Date Tested	: 11-16-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	: Brown Silty Clay	_	

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D

	% Passing							
	No.16		1.18	mm				
	No.30		0.6	mm				
	No.40		0.425	mm	98.9			
	No.50		0.3	mm				
	No.60		0.25	mm				
	No.80		0.18	mm				
	No.100		0.15	mm				
	No.200		0.075	mm	91.7			
	No.270		0.053	mm				
	Hyd. Rd.	#1	0.0286	mm	66.2			
	Hyd. Rd.	#2	0.0193	mm	49.1			
AASHTO T88	Hyd. Rd.	#3	0.0118	mm	32.9			
нто	Hyd, Rd.	#4	0.0085	mm	26.0			
AAS	Hyd, Rd.	#5	0.0061	mm	20.9			
	Hyd. Rd.	#6	0.0030	mm	16.0			
	Hyd. Rd.	#7	0.0013	mm	11.7			
<u>10</u>	7							

$D_{50} = 0.0197 \text{ mm}$

CBR : NA Natural Moisture (%) (AASHTO T265) : 22.2

- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

- Coarse Sand (-No.10 + No.40) : 1.1
- Fine Sand (-N0.40 + N0.200) : 7.2
 - Silt (-No.200 + 0.002mm) : 77.8
 - Clay (-0.002mm + 0.001mm) : 3.4
 - Colloids (-0.001mm) : 10.6

ASTM Composition of Total Sample: D2487

Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 1.1 Fine Sand (-No.40 + No.200) : 7.2 Silt (-No.200 + 0.005mm) : 72.2 Clay (-0.005mm + 0.001mm) : 8.9 Colloids (-0.001mm) : 10.6

DIC

Approved By :

Liquid Limit (AASHTO T89) : 24

- Plastic Limit (AASHTO T90) : 19
 - Plasticity Index : 5
 - Liquidity Index : 0.62
 - Activity : 0.36
 - Sp. Gr. (AASHTO T100) : 2.681
- AASHTO Classification: M145 : A-4 (3)
- ASTM Classification: D2487 : CL-ML

Soil No. 22

CONSULTING ENGINEERS

0/ D- --!...

SOIL CLASSIFICATION

Project Name :	Solar Farm Information & Welcome Center Site Design			
Project No.	38001-1684-0438001-1684-04	Sample No.	:	ST - 1
Project County :	Haywood	Sample Loc.	:	Boring No. 58
Project State :	Tennessee	Sample Depth	:	17.7' to 19.5'
Laboratory No. :	10217	Date Tested	:	11-16-10
Submitted By :	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type :	Light Gray Lean Clay with Sand	_		

AASHTO T27 :

% Passing						
4	in.	101.6	mm			
3.5	in.	88.9	mm			
3	in.	76.2	mm			
2.5	in.	63.5	mm			
2	in.	50.8	mm			
1 3/4	in.	45	mm			
1 1/2	in.	38.1	mm			
1 1/4	in.	31.5	mm			
1	in.	25	mm			
3/4	in.	19	mm			
1/2	in.	12.5	mm			
3/8	in.	9.5	mm			
1/4		6.3	mm			
No.4		4.75	mm	100.0		
No.6		3.35	mm			
No.10		2	mm	100.0		

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	78.5
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0299	mm	57.8
	Hyd. Rd.	#2	0.0192	mm	53.7
T88	Hyd. Rd.	#3	0.0113	mm	47.5
AASHTO T88	Hyd. Rd.	# 4	0.0081	mm	44.4
AAS	Hyd. Rd.	# 5	0.0058	mm	40.2
	Hyd. Rd.	#6	0.0029	mm	33.9
	Hyd. Rd.	#7	0.0012	mm	29.7
014					

$D_{50} = 0.014 \text{ mm}$

CBR : NA Natural Moisture

- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.1

Fine Sand (-N0.40 + N0.200) : 21.4

- Silt (-No.200 + 0.002mm) : 46.4
 - Clay (-0.002mm + 0.001mm) : 4.8 Colloids (-0.001mm) : 27.3

ASTM Composition of Total Sample: D2487

Coarse Gravel ($3in. + 3/4in.$) : 0.0	
Fine Gravel ($-3/4$ in. + No.4) : 0.0	
Coarse Sand (-No.4 + No.10) : 0.0	
Medium Sand (-No.10 + No.40) : 0.1	
Fine Sand ($-No.40 + No.200$) : 21.4	
Silt (-No.200 + 0.005mm) : 39.7	
Clay $(-0.005 \text{mm} + 0.001 \text{mm})$:	11.5
Colloids (-0.001mm) :	27.3

Approved By : _____

Soil No. 23

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

Natural Moisture (%) (AASHTO T265) : 24.5

Liquid Limit (AASHTO T89) : 41

- Plastic Limit (AASHTO T90) : 18
 - Plasticity Index : 23
 - Liquidity Index : 0.27
 - Activity : 0.72
- Sp. Gr. (AASHTO T100) : 2.655
- AASHTO Classification: M145 : A-7-6 (17)
 - ASTM Classification: D2487 : CL

CONSULTING ENGINEERS

0/ D!...

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design	l	
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: ST - 2
Project County	: Haywood	Sample Loc.	: Boring No. 58
Project State	: Tennessee	Sample Depth	: 32.7' to 34.2'
Laboratory No.	: 10217	Date Tested	: 11-13-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	: White & Gray Sandy Lean Clay		

AASHTO T27 :

-				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D

AASHTO Composition of Total Sample: M145

Colloids (-0.001mm) : 18.4

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.0

Fine Sand (-No.40 + No.200) : 34.0

Silt (-No.200 + 0.002mm) : 42.5 Clay (-0.002mm + 0.001mm) : 5.1

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	100.0
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	66.0
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0304	mm	50.2
	Hyd. Rd.	#2	0.0196	mm	45.2
AASHTO T88	Hyd. Rd.	#3	0.0115	mm	40.0
HTC	Hyd. Rd.	#4	0.0082	mm	37.0
AAS	Hyd. Rd.	# 5	0.0059	mm	32.8
	Hyd. Rd.	#6	0.0029	mm	26.2
	Hyd. Rd.	#7	0.0012	mm	20.2
).03	mm				

D ₅₀	=	0.	03	n

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

Natural Moisture (%) (AASHTO T265) : 20.8

Liquid Limit (AASHTO T89) : 28

Plastic Limit (AASHTO T90) : 16

Plasticity Index : 12

Liquidity Index : 0.36

Activity : 0.51

Sp. Gr. (AASHTO T100) : 2.675

AASHTO Classification: M145 : A-6 (5)

ASTM Classification: D2487 : CL

Silt (-No.200 + 0.005mm) : 34.8 Clay (-0.005mm + 0.001mm) : 12.8 Colloids (-0.001mm) : 18.4

Approved By : DLC

Soil No. 24

CONSULTING ENGINEERS

0/ n. ...!...

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 1
Project County	:	Haywood	Sample Loc.	:	Boring No. 59
Project State	:	Tennessee	Sample Depth	:	19.1' to 20.9'
Laboratory No.	:	10217	Date Tested	:	11-16-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Gray Lean Clay with Sand	-		
				_	

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D.

% Passing 1.18 No.16 mm No.30 0.6 mm No.40 0.425 100.0 mm No.50 0.3 mm No.60 0.25 mm 0.18 No.80 mm No.100 0.15 mm No.200 0.075 80.5 mm No.270 0.053 mm Hyd. Rd. #1 0.0297 59.1 mm 0.0192 52.9 Hyd. Rd. #2 mm AASHTO T88 0.0113 Hyd. Rd. #3 47.8 mm #4 0.0081 42.7 Hyd. Rd. mm Hyd. Rd. #5 0.0058 mm 38.7 Hyd. Rd. #6 0.0029 32.6 mm Hyd. Rd. #7 0.0012 mm 24.3

$D_{50} = 0.0142 \text{ mm}$

CBR : NA

- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

- Coarse Sand (-No.10 + No.40) : 0.0
- Fine Sand (-No.40 + No.200) : 19.5
 - Silt (-No.200 + 0.002mm) : 51.6
 - Clay(-0.002mm + 0.001mm) : 6.8Colloids (-0.001mm) : 22.2

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in + 3/4in) : 0.0

- Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0
- Medium Sand (-No.10 + No.40) : 0.0
- Fine Sand (-No.40 + No.200) : 19.5
- Silt (-No.200 + 0.005mm) : 43.1
 - Clay(-0.005mm + 0.001mm) : 15.2Colloids (-0.001mm) : 22.2

Approved By : DLC

25 Soil No.

- Natural Moisture (%) (AASHTO T265) : 26.6
 - Liquid Limit (AASHTO T89) : 41
 - Plastic Limit (AASHTO T90) : 23
 - Plasticity Index : 18
 - Liquidity Index : 0.20
 - Activity : 0.62
 - Sp. Gr. (AASHTO T100) : 2.669 AASHTO Classification: M145 : A-7-6 (15)
 - ASTM Classification: D2487 : CL

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Ducient Manue			
Project Name	: Solar Farm Information & Welcome Center Site Design		
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: ST - 4
Project County	•	Sample Loc.	: Boring No. 60
Project State		Sample Depth	: 39.2' to 40.4'
Laboratory No.		Date Tested	: 11-13-10
	: Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	: White, Gray & Reddish Orange Sandy Silty Clay		
AASHTO T27 :			
	% Possing		0/ Dessions

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	99.9
				D.

				% Passing
No.16		1.18	mm	
No.30		0.6	mm	
No.40		0.425	mm	99.3
No.50		0.3	mm	
No.60		0.25	mm	
No.80		0.18	mm	
No.100		0.15	mm	
No.200		0.075	mm	55.6
No.270		0.053	mm	
Hyd. Rd.	#1	0.0320	mm	39.1
Hyd. Rd.	#2	0.0205	mm	36.0
Hyd. Rd.	#3	0.0120	mm	30.8
Hyd. Rd.	#4	0.0086	mm	27.0
Hyd. Rd.	#5	0.0061	mm	23.8
Hyd. Rd.	#6	0.0030	mm	18.9
Hyd. Rd.	#7	0.0013	mm	12.6
	No.30 No.40 No.50 No.60 No.200 No.200 No.270 Hyd. Rd. Hyd. Rd.	No.30 No.40 No.50 No.60 No.80 No.100 No.200 No.270 Hyd. Rd. #1 Hyd. Rd. #2 Hyd. Rd. #3 Hyd. Rd. #4 Hyd. Rd. #5 Hyd. Rd. #6 Hyd. Rd. #7	No.30 0.6 No.40 0.425 No.50 0.3 No.60 0.25 No.80 0.18 No.100 0.15 No.200 0.075 No.270 0.053 Hyd. Rd. #1 0.0205 Hyd. Rd. #2 0.0205 Hyd. Rd. #3 0.0120 Hyd. Rd. #4 0.0086 Hyd. Rd. #5 0.0061 Hyd. Rd. #6 0.0030 Hyd. Rd. #7 0.0013	No.30 0.6 mm No.40 0.425 mm No.50 0.3 mm No.60 0.25 mm No.60 0.25 mm No.80 0.18 mm No.100 0.15 mm No.200 0.075 mm No.270 0.053 mm Hyd. Rd. #1 0.0320 mm Hyd. Rd. #2 0.0205 mm Hyd. Rd. #3 0.0120 mm Hyd. Rd. #5 0.0061 mm Hyd. Rd. #5 0.0061 mm Hyd. Rd. #6 0.0030 mm Hyd. Rd. #7 0.0013 mm

 $D_{50} = 0.0562 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 16.4

- Liquid Limit (AASHTO T89) : 21
- Plastic Limit (AASHTO T90) : 15
 - Plasticity Index : 6
 - Liquidity Index : 0.28
 - Activity : 0.38
 - Sp. Gr. (AASHTO T100) : 2.643
- AASHTO Classification: M145 : A-4 (1)
- ASTM Classification: D2487 : CL-ML

Coarse Sand ($-No.10 + No.40$)	:	0.6	
Fine Sand $(-No.40 + No.200)$:	43.7	

CBR : NA

Dry Dens. : NA

Opt. Moist. : NA

Silt (-No.200 + 0.002mm) : 39.7

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.1

- Clay(-0.002mm + 0.001mm) : 4.5
 - Colloids (-0.001mm) : 11.4

ASTM Composition of Total Sample: D2487

仪人

Approved By :

Soil No. 26

CONSULTING ENGINEERS

A/ D .

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design			
Project No.	: 38001-1684-0438001-1684-04	Sample No.	:	ST - 1
Project County	: Haywood	Sample Loc.	:	Boring No. 62
Project State	: Tennessee	Sample Depth	:	29.5' to 30.9'
Laboratory No.	: 10217	Date Tested	:	11-16-10
Submitted By	: Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	: Beige & Yellowish Orange Sandy Lean Clay	·		
A LOTINO MAN				

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				n

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	97.9
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	58.8
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0314	mm	42.8
	Hyd. Rd.	#2	0.0201	mm	39.9
AASHTO T88	Hyd. Rd.	#3	0.0117	mm	35.9
HTO	Hyd. Rd.	#4	0.0084	mm	31.7
AAS	Hyd. Rd.	#5	0.0060	mm	28.7
	Hyd. Rd.	#6	0.0030	mm	25.4
	Hyd. Rd.	#7	0.0013	mm	20.4
10	4				

 $D_{50} = 0.0464 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 28.2

Liquid Limit (AASHTO T89) : 36

- Plastic Limit (AASHTO T90) : 20
 - Plasticity Index : 16
 - Liquidity Index : 0.50
 - Activity : 0.69
 - Sp. Gr. (AASHTO T100) : 2.653
- AASHTO Classification: M145 : A-6 (7)
- ASTM Classification: D2487 : CL

ASTM Composition of Total Sample, D2487
Coarse Gravel ($3in. + 3/4in.$) : 0.0
Fine Gravel $(-3/4in. + No.4) : 0.0$
Coarse Sand (-No.4 + No.10) $: 0.0$
Medium Sand (-No.10 + No.40) : 2.1
Fine Sand ($-No.40 + No.200$) : 39.1
Silt (-No.200 + 0.005mm) : 31.0
Clay (-0.005mm + 0.001mm) : 9.3
Colloids (-0.001mm) : 18.5

hic

Approved By :

Soil No. 27

- CBR : NA
- Dry Dens. : NA
- Opt. Moist. : NA
- AASHTO Composition of Total Sample: M145
 - Gravel (3in. + No.10) : 0.0
- Coarse Sand (-No.10 + No.40) : 2.1
- Fine Sand (-N0.40 + N0.200) : 39.1
 - Silt (-No.200 + 0.002mm) : 35.7
 - Clay (-0.002mm + 0.001mm) : 4.6 Colloids (-0.001mm) : 18.5
- ASTM Composition of Total Sample: D2487

CONSULTING ENGINEERS

0/ Dessin

SOIL CLASSIFICATION

Project Name :	Solar Farm Information & Welcome Center Site Design		
Project No. :	38001-1684-0438001-1684-04	Sample No.	: ST - 1
Project County :	Haywood	Sample Loc.	: Boring No. 63
Project State :	Tennessee	Sample Depth	: 25.0' to 26.3'
Laboratory No. :	10217	Date Tested	: 11-13-10
Submitted By :	Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type :	Beige & Yellowish Orange Lean Clay with Sand	_	_

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				n.

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Clay (-0.002 mm + 0.001 mm) : 7.4

Colloids (-0.001mm) : 24.5

Coarse Sand (-No.10 + No.40) : 0.0

Fine Sand (-No.40 + No.200) : 21.7 Silt (-No.200 + 0.002mm) : 46.4

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	100.0
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	78.3
	No.270		0.053	mm	
	Hyd, Rd.	#1	0.0300	mm	57.0
	Hyd. Rd.	#2	0.0193	mm	52.9
AASHTO T88	Hyd. Rd.	#3	0.0112	mm	49.9
HTO	Hyd. Rd.	#4	0.0081	mm	43.8
AAS	Hyd. Rd.	#5	0.0058	mm	40.9
	Hyd, Rd.	#6	0.0029	mm	35.8
	Hyd. Rd.	#7	0.0012	mm	26.7
4.4	¢				

$D_{50} = 0.0115 \text{ mm}$

Dry Dens. : NA

Opt. Moist. : NA

CBR : NA Natural Moisture (%) (AASHTO T265) : 23.4

Liquid Limit (AASHTO T89) : 43

Plastic Limit (AASHTO T90) : 19

- Plasticity Index : 24
- Liquidity Index : 0.18
 - Activity : 0.75
- Sp. Gr. (AASHTO T100) : 2.654
- AASHTO Classification: M145 : A-7-6 (18)
 - ASTM Classification: D2487 : CL

Approved By : DLL

Soil No. 28

CONSULTING ENGINEERS

0/ Dessing

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design	l	
Project No.	: 38001-1684-0438001-1684-04	Sample No.	: ST - 2
Project County	: Haywood	Sample Loc.	: Boring No. 63
Project State	: Tennessee	Sample Depth	: 35.0' to 36.1'
Laboratory No.	: 10217	Date Tested	: 11-13-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type	: Brown Lean Clay with Sand		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D

Date Reported : 11-23-10						
				% Passing		
No.16		1.18	mm			
No.30		0.6	mm			
No.40		0.425	mm	100.0		
No.50		0.3	mm			
No.60		0.25	mm			
No.80		0.18	mm			
No.100		0.15	mm			
No.200		0.075	mm	78.9		
No.270		0.053	mm			
Hyd. Rd.	#1	0.0300	mm	55.7		
Hyd. Rd.	#2	0.0193	mm	48.8		
Hyd. Rd.	#3	0.0113	mm	43.8		
Hyd. Rd.	#4	0.0082	mm	37.6		
Hyd. Rd.	# 5	0.0059	mm	34.5		
Hyd. Rd.	#6	0.0030	mm	24.6		

 $D_{50} = 0.0209 \text{ mm}$

ASHTO T88

Hyd. Rd.

#7

Natural Moisture (%) (AASHTO T265) : 26.7

0.0013

Liquid Limit (AASHTO T89) : 38

Plastic Limit (AASHTO T90) : 21

mm

- Plasticity Index : 17
- Liquidity Index : 0.33
 - Activity : 0.83

15.8

- Sp. Gr. (AASHTO T100) : 2.672
- AASHTO Classification: M145 : A-6 (13)
 - ASTM Classification: D2487 : CL

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 0.0 Fine Sand (-No.40 + No.200) : 21.1 Silt (-No.200 + 0.005mm) : 46.7 Clay (-0.005mm + 0.001mm) : 17.9 Colloids (-0.001mm) : 14.4

Approved By : DLC

29 Soil No.

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

Opt. Moist. : NA

CBR : NA

Dry Dens. : NA

- AASHTO Composition of Total Sample: M145
 - Gravel (3in. + No.10) : 0.0
- Coarse Sand (-No.10 + No.40) : 0.0
- Fine Sand (-No.40 + No.200) : 21.1
 - Silt (-No.200 + 0.002mm) : 58.3
 - Clay (-0.002 mm + 0.001 mm) : 6.2 Colloids (-0.001mm) : 14.4

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name :	Solar Farm Information & Welcome Center Site Design	l	
Project No. :	38001-1684-0438001-1684-04	Sample No.	: ST - 3
Project County :	Haywood	Sample Loc.	: Boring No. 63
Project State :	Tennessee	Sample Depth	: 45.0' to 46.1'
Laboratory No. :	10217	Date Tested	: 11-13-10
Submitted By :	Florence & Hutcheson	Date Reported	: 11-23-10
Soil Type :	Gray Sandy Lean Clay		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	91.5
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	58.4
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0329	mm	27.4
	Hyd. Rd.	#2	0.0212	mm	21.3
AASHTO T88	Hyd. Rd.	#3	0.0124	mm	16.2
нтс	Hyd. Rd.	#4	0.0089	mm	12.0
AAS	Hyd. Rd.	# 5	0.0063	mm	9.2
	Hyd. Rd.	#6	0.0031	mm	4.3
	Hyd. Rd.	#7	0.0013	mm	0.3
or					

 $D_{50} = 0.06 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 29

Liquid Limit (AASHTO T89) : 30

Plastic Limit (AASHTO T90) : 16

- Plasticity Index : 14
- Liquidity Index : 0.95
 - Activity : 6.17
- Sp. Gr. (AASHTO T100) : 2.668
- AASHTO Classification: M145 : A-6 (5)
 - ASTM Classification: D2487 : CL

Coai	se Sand (-No.4 + No.10) : 0.0
Mediur	n Sand (-No.10 + No.40) : 8.5
Fine	Sand (-No.40 + No.200) : 33.1
S	ilt (-No.200 + 0.005mm) : 50.8
	Clay $(-0.005 \text{mm} + 0.001 \text{mm})$: 7.3
	Colloids (-0.001mm) : 0.3

Soil No. 30

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

- CBR : NA
- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 8.5

- Fine Sand (-No.40 + No.200) : 33.1
 - Silt (-No.200 + 0.002mm) : 56.1

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0

Clay (-0.002mm + 0.001mm) : 2.0 Colloids (-0.001mm) : 0.3

Florence & Hutcheson *************

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Proj	Project Name : Solar Farm Information & Welcome Center Site Design											
Pr	Project No. : 38001-1684-0438001-1684-04							Sample No. : ST - 1				
Projec	Project County : Haywood							5	Sample Loc.	: Bo	ring No. 64	
Project State : Tennessee							Sa	imple Depth	: 15	.0' to 16.6'		
Laboratory No. : 10217									Date Tested			
Submitted By : Florence & Hutcheson							Date Reported : 11-23-10					
9	Soil Type	e : Be	ige & Tan L	lean Cl	ay with Sand	t			-			
AASHT	O T27 :											
					% Passing						% Passing	
	4	in.	101.6	mm		1	No.16		1.18	mm		
	3.5	in.	88.9	mm]	No.30		0.6	mm		
	3	in.	76.2	mm]	No.40		0.425	mm	99.8	

3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D,

	IN0.30		0.0	mm	
	No.40		0.425	mm	99.8
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	71.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0312	mm	50.4
	Hyd. Rd.	#2	0.0202	mm	44.1
AASHTO T88	Hyd. Rd.	#3	0.0118	mm	39.9
нтс	Hyd. Rd.	#4	0.0084	mm	36.9
AAS	Hyd. Rd.	# 5	0.0060	mm	33.7
	Hyd. Rd.	#6	0.0030	mm	28.3
	Hyd. Rd.	#7	0.0013	mm	24.5
ഹാവ്	A				

$D_{50} = 0.0304 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 23.5

- Liquid Limit (AASHTO T89) : 36
- Plastic Limit (AASHTO T90) : 19
 - Plasticity Index : 17
 - Liquidity Index : 0.25
 - Activity : 0.64
 - Sp. Gr. (AASHTO T100) : 2.604
- AASHTO Classification: M145 : A-6 (11)
 - ASTM Classification: D2487 : CL

Coarse Gravel ($3in. + 3/4in.$) : 0.0	
Fine Gravel ($-3/4$ in. + No.4) : 0.0	
Coarse Sand (-No.4 + No.10) : 0.0	
Medium Sand ($-No.10 + No.40$) : 0.2	
Fine Sand ($-No.40 + No.200$) : 27.9	
Silt ($-No.200 + 0.005mm$) : 39.7	
Clay (-0.005 mm + 0.001 mm) :	10.0
Colloids (-0.001mm) :	22.2

be

Approved By :

Soil No. 31

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

Opt. Moist. : NA

CBR : NA

Dry Dens. : NA

- AASHTO Composition of Total Sample: M145
- Gravel (3in. + No.10) : 0.0 Coarse Sand (-No.10 + No.40) : 0.2 Fine Sand (-No.40 + No.200) : 27.9
 - Silt (-No.200 + 0.002mm) : 45.4 Clay (-0.002 mm + 0.001 mm) : 4.3

 - Colloids (-0.001mm) : 22.2

ASTM Composition of Total Sample: D2487

FA

Florence & Hutcheson

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	:	Solar Farm Information & Welcome Center Site Design			
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 1
Project County	:	Haywood	Sample Loc.	:	Boring No. 65
Project State	:	Tennessee	Sample Depth	:	34.7' to 35.6'
Laboratory No.	:	10217	Date Tested	:	11-16-10
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	:	Dark Gray Silty Sand	-		

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63,5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3,35	mm	
No.10		2	mm	100.0

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	99.8
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	35.9
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0343	mm	15.4
	Hyd. Rd.	#2	0.0220	mm	12.2
AASHTO T88	Hyd. Rd.	#3	0.0129	mm	7.1
HTC	Hyd. Rd.	#4	0.0091	mm	5.2
AAS	Hyd. Rd.	#5	0.0065	mm	4.1
	Hyd. Rd.	#6	0.0032	mm	1.8
	Hyd. Rd.	#7	0.0013	mm	0.0
) 11	mm				

 $D_{50} = 0.11 \text{ mm}$

Natural Moisture (%) (AASHTO T265) : 24

Liquid Limit (AASHTO T89) : NP

Plastic Limit (AASHTO T90) : NP

- Plasticity Index : NP
- Liquidity Index : NA

Activity : NA

- Sp. Gr. (AASHTO T100) : 2.638
- AASHTO Classification: M145 : A-4 (0)
 - ASTM Classification: D2487 : SM

Coarse Gravel (3in. + 3/4in.)	:	0.0
Fine Gravel (-3/4in. + No.4)	:	0.0
Coarse Sand (-No.4 + No.10)	:	0.0
Medium Sand ($-No.10 + No.40$)	:	0.2

ASTM Composition of Total Sample: D2487

- Fine Sand (-No.40 + No.200) : 63.9
 - Silt (-No.200 + 0.005mm) : 32.6
 - Clay (-0.005mm + 0.001mm) : 3.3 Colloids (-0.001mm) : 0.0

Approved By : ______

Soil No. 32

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

CBR : NA

- Dry Dens. : NA
- Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 0.2 Fine Sand (-No.40 + No.200) : 63.9

Silt (-N0.200 + 0.002mm) : 35.1

- Clay(-0.002mm + 0.001mm) : 0.8
 - Colloids (-0.001mm) : 0.0

CONSULTING ENGINEERS

SOIL CLASSIFICATION

Project Name	: Solar Farm Information & Welcome Center Site Design			
Project No.	: 38001-1684-0438001-1684-04	Sample No.	:	ST - 2
Project County	: Haywood	Sample Loc.	:	Boring No. 68
Project State	: Tennessee	Sample Depth	:	29.5' to 30.3'
Laboratory No.	: 10217	Date Tested	:	11-16-10
Submitted By	: Florence & Hutcheson	Date Reported	:	11-23-10
Soil Type	: Gray Lean Clay with Sand			

AASHTO T27 :

				% Passing
4	in.	101.6	mm	
3.5	in.	88.9	mm	
3	in.	76.2	mm	
2.5	in.	63.5	mm	
2	in.	50.8	mm	
1 3/4	in.	45	mm	
1 1/2	in.	38.1	mm	
1 1/4	in.	31.5	mm	
1	in.	25	mm	
3/4	in.	19	mm	
1/2	in.	12.5	mm	
3/8	in.	9.5	mm	
1/4		6.3	mm	
No.4		4.75	mm	100.0
No.6		3.35	mm	
No.10		2	mm	100.0
				D.

					% Passing
	No.16		1.18	mm	
	No.30		0.6	mm	
	No.40		0.425	mm	95.3
	No.50		0.3	mm	
	No.60		0.25	mm	
	No.80		0.18	mm	
	No.100		0.15	mm	
	No.200		0.075	mm	77.8
	No.270		0.053	mm	
	Hyd. Rd.	#1	0.0303	mm	51.8
	Hyd. Rd.	#2	0.0196	mm	44.7
T88	Hyd. Rd.	#3	0.0116	mm	38.5
ASHTO T88	Hyd. Rd.	#4	0.0083	mm	33.4
AAS	Hyd. Rd.	# 5	0.0060	mm	29.4
	Hyd. Rd.	#6	0.0030	mm	25.1
	Hyd. Rd.	#7	0.0013	mm	17.1
0.00	-				

CBR : NA Natural

Dry Dens. : NA

Opt. Moist. : NA

AASHTO Composition of Total Sample: M145

Gravel (3in. + No.10) : 0.0

Coarse Sand (-No.10 + No.40) : 4.7

Fine Sand (-No.40 + No.200) : 17.5

Silt (-No.200 + 0.002mm) : 56.4

Clay (-0.002mm + 0.001mm) : 5.9

Colloids (-0.001mm) : 15.5

ASTM Composition of Total Sample: D2487 Coarse Gravel (3in. + 3/4in.) : 0.0 Fine Gravel (-3/4in. + No.4) : 0.0 Coarse Sand (-No.4 + No.10) : 0.0 Medium Sand (-No.10 + No.40) : 4.7 Fine Sand (-No.40 + No.200) : 17.5 Silt (-No.200 + 0.005mm) : 49.5 Clay (-0.005mm + 0.001mm) : 12.8

DLC

Colloids (-0.001 mm) : 12.8 Colloids (-0.001 mm) : 15.5

Approved By :

Soil No. 33

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • 270.444.9691 • fax 270.443.3943 email: fhcorporate@flohut.com

Natural Moisture (%) (AASHTO T265) : 25.6

Liquid Limit (AASHTO T89) : 41

Plastic Limit (AASHTO T90) : 22

Plasticity Index : 19

Liquidity Index : 0.19

- Activity : 0.89
- Sp. Gr. (AASHTO T100) : 2.678
- AASHTO Classification: M145 : A-7-6 (14)

ASTM Classification: D2487 : CL

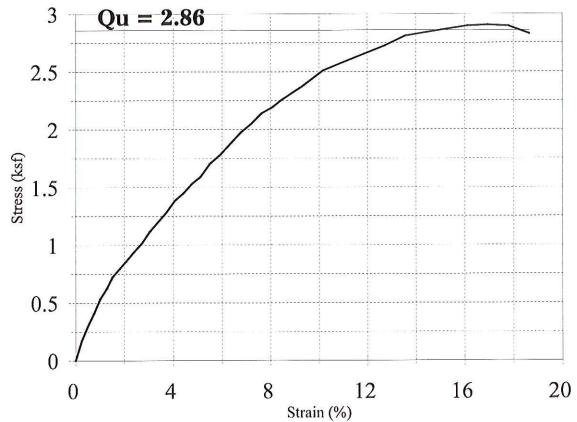
 $\frac{00.0}{D_{50}} = 0.0272 \text{ mm}$

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

								Page 1 of 2
				me Center Site	Design			
Project No.		4-0438001-1	684-04			Sample No. :		
Project County							Boring No_47	
Project State	: Tennessee					Sample Depth :		
Laboratory No.						Date Tested :		
Submitted By			CI			Date Reported :	11-23-10	
	: Light Gray		Clay			T - 54 - 1 TT - 1 - 1	6 00 in	
I TO A MONTROD - A TO A PROPERTY	: 120.9					Initial Height :	5.89 in	
Dry Density		pcf			11	nitial Diameter :	2.82 in	
	: 24.1	%	Axial	Corrected	Unit	Proving Ring :	#22734	
RESULTS:			Load	Area	Strain	Stress		
		#	<u>lbs</u>	<u>sf</u>	<u>%</u>	<u>Ksf</u>		
		<u>#</u> 1	0.0	0.04	<u>70</u> 0.0	0.00		
		2	7.5	0.04	0.0	0.17		
		3	13.2	0.04	0.5	0.17		
		3 4	13.2	0.04	0.5	0.30		
		4 5	23.5	0.04	0.8 1.0	0.41		
		5	23.5	0.04	1.0	0.54		
		7	32.0	0.04	1.5	0.02		
		8	34.8	0.04	1.3	0.73		
		8	34.8 37.6	0.04	2.0	0.79		
		9 10	37.0 41.4	0.04	2.0	0.83		
		10	41.4	0.04	2.4	1.02		
		12	43.1	0.04	3.1	1.02		
		12	49.9 53.8	0.04	3.4	1.12		
		13	57.7	0.04	3.4	1.20		
		14	62.5	0.04	4.1	1.20		
		15	65.4	0.05	4.1	1.39		
		17	69.3	0.03	4.4	1.43		
		17	72.2	0.05	5.1	1.59		
		18		0.03	5.5	1.59		
		20	78.0 81.9	0.05	5.9	1.78		
		20	86.8	0.05	5.9 6.4	1.88		
		21	91.6	0.05	6.8	1.88		
					7.2			
		23 24	95.5 100.2	0.05 0.05	7.6	2.05 2.14		
		24	100.2	0.05	7.0 8.1	2.14		
		25	105.0	0.05	8.5	2.19		
		20	113.4	0.03	8.5 9.3	2.20		
		27	120.9	0.05	9.3 10.2	2.58		
		28 29	120.9	0.05	11.0	2.51		
		29 30	125.0	0.03	11.0	2.58		
		30	130.5	0.05	12.7	2.00		
		31	140.6	0.05	12.7	2.72		
		32	140.6	0.05	14.4	2.81		
		33 34		0.05	14.4	2.84		
		34 35	146.4 149.4	0.05	15.5	2.87		
		35 36	149.4	0.05	10.1	2.90		
		30 37	151.5	0.05	17.0	2.91		
		38	150.3	0.05	18.7	2.83		


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

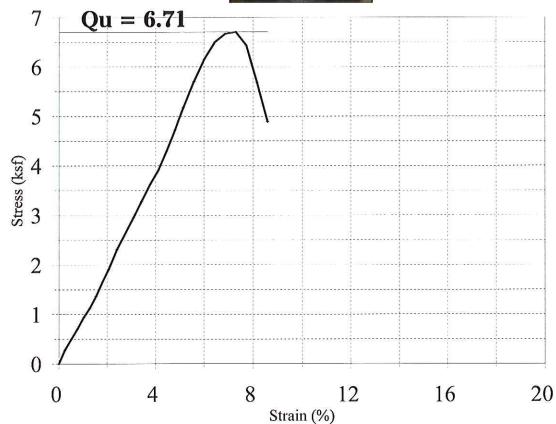
Project Name	1	Solar Farm Information & Welcome Center Site Design				
Project No.	1	38001-1684-0438001-1684-04	Sample No.	•	ST - 1	
Project County	1	Haywood	Sample Loc.	:	Boring No_47	
Project State	1	Tennessee	Sample Depth	:	15.0' to 17.0'	
Laboratory No.	e i	10217	Date Tested	•	10-30-10	
Submitted By	1	Florence & Hutcheson	Date Reported	2	11-23-10	
Soil Type	:	Light Gray Sandy Lean Clay				
Wet Density	:	120.9 pcf	Initial Height	1	5.89 in	
Dry Density	;	97.4 pcf	Initial Diameter	1	2.82 in	
Moisture		24.1 %	Proving Ring		#22734	
Deg. of Sat.	:	92.3 %	Specific Gravity	1	2.635	
COMMENTS	:	AASHTO: T-208				

APPROVED BY: DLC

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2 Solar Farm Information & Welcome Center Site Design Project Name 1 Project No. 38001-1684-0438001-1684-04 Sample No. : ST - 3 ÷ Project County : Haywood Sample Loc. : Boring No 47 Sample Depth: 40.0' to 42.0' Project State : Tennessee Laboratory No. : 10217 Date Tested : 10-30-10 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson Soil Type : Gray Lean Clay with Sand Initial Height : 5.82 in Wet Density 134.4 pcf 1 2.83 in Dry Density 115.1 pcf Initial Diameter : ÷ 16.7 % Proving Ring : #22734 Moisture : Unit **RESULTS:** Axial Corrected Load Area Strain Stress <u>#</u> lbs sf % <u>Ksf</u> 1 0.0 0.04 0.0 0.00 2 12.2 0.04 0.3 0.28 3 0.5 21.6 0.04 0.49 4 31.0 0.04 0.8 0.71 5 41.4 0.04 1.0 0.94 49.9 0.04 1.3 1.13 6 7 0.04 1.5 1.37 60.6 8 73.2 0.04 1.8 1.65 9 84.8 0.04 2.1 1.91 10 103.0 0.04 2.4 2.31 2.8 2.63 11 118.1 0.04 2.96 12 133.1 0.04 3.1 3.29 148.4 0.05 3.4 13 14 164.1 0.05 3.8 3.62 177.8 4.1 3.91 15 0.05 4.30 16 196.2 0.05 4.5 4.73 17 216.6 0.05 4.8 18 238.0 0.05 5.2 5.18 19 263.2 0.05 5.6 5.70 285.5 0.05 6.0 6.16 20 21 303.0 0.05 6.4 6.50 22 312.3 0.05 6.9 6.67 7.3 6.71 23 315.3 0.05 304.0 6.43 24 0.05 7.7 8.2 5.69 25 270.0 0.05 26 233.4 0.05 8.6 4.89


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

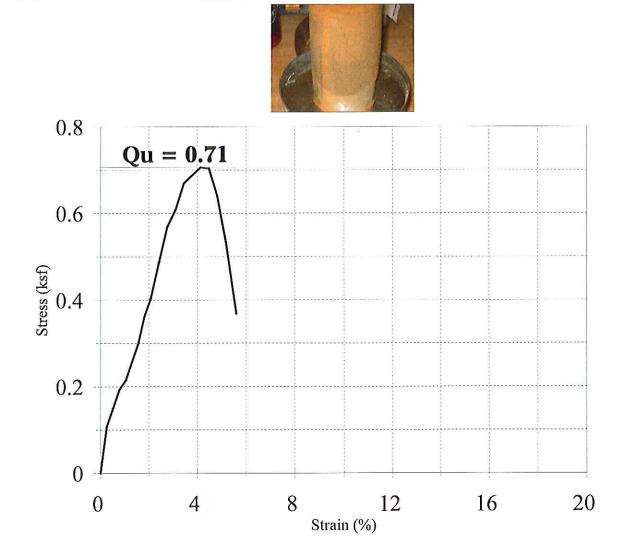
Project Name	÷	Solar Farm Information & Welcome Center Site Design	5)			
Project No.	1	38001-1684-0438001-1684-04	Sample No.	:	ST - 3	
Project County		Haywood	Sample Loc.		Boring No_47	
Project State		Tennessee	Sample Depth	Į,	40.0' to 42.0'	
Laboratory No.	:	10217	Date Tested	:	10-30-10	
Submitted By	2	Florence & Hutcheson	Date Reported	1	11-23-10	
Soil Type	:	Gray Lean Clay with Sand				
Wet Density	:	134.4 pcf	Initial Height		5.82 in	
Dry Density	2	115.1 pcf	Initial Diameter	ŝ	2.83 in	
Moisture	2	16.7 %	Proving Ring	1	#22734	
Deg. of Sat.	:	100.0 %	Specific Gravity		2.632	
COMMENTS	:	AASHTO: T-208				

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

: Solar Farm Information & Welcome Center Site Design Project Name Project No. : 38001-1684-0438001-1684-04 Sample No. : ST - 2 Project County : Haywood Sample Loc. : Boring No 51 Project State : Tennessee Sample Depth : 20.4' to 21.9' Date Tested : 11-11-10 Laboratory No.: 10217 Submitted By : Florence & Hutcheson Date Reported : 11-23-10 : Reddish Orange Silty Sand Soil Type Initial Height : 5.80 in Wet Density 123.2 pcf : 2.82 in Initial Diameter : Dry Density 109.3 pcf : #22734 Moisture 12.7 % **Proving Ring** : : **RESULTS:** Corrected Unit Axial Load Area Strain Stress <u>#</u> lbs sf <u>%</u> <u>Ksf</u> 1 0.0 0.04 0.0 0.00 2 4.7 0.04 0.3 0.11 3 0.04 0.5 0.15 6.6 4 8.5 0.04 0.8 0.19 5 9.4 0.04 1.0 0.21 1.3 11.3 0.04 0.26 6 7 13.2 0.04 1.6 0.30 1.8 0.36 8 16.0 0.04 9 17.9 0.04 2.1 0.40 10 21.6 0.04 2.4 0.49 0.04 2.8 0.57 11 25.4 27.3 0.04 3.1 0.61 12 13 0.04 3.5 0.67 30.1 14 31.0 0.05 3.8 0.69 15 32.0 0.05 4.1 0.71 4.5 0.70 16 32.0 0.05 29.1 4.8 0.64 17 0.05 18 24.4 0.05 5.2 0.53 19 16.9 0.05 5.6 0.37



CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

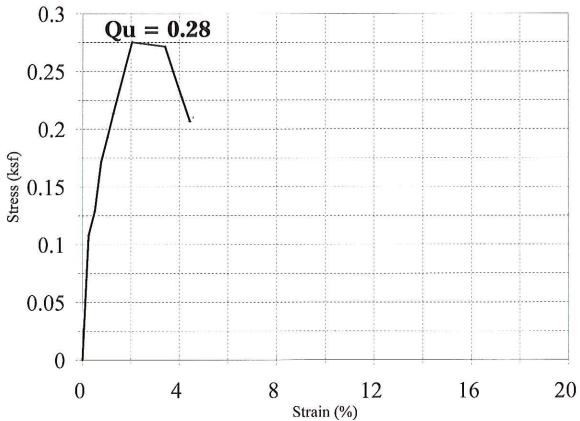
Project Name	÷	Solar Farm Information & Welcome Center Site Design	l			
Project No.	:	38001-1684-0438001-1684-04	Sample No. :	:	ST - 2	
Project County	1	Haywood	Sample Loc. :	:	Boring No_5	1
Project State	:	Tennessee	Sample Depth :	:	20.4' to 21.9'	
Laboratory No.	. :	10217	Date Tested :	:	11-11-10	
Submitted By	:	Florence & Hutcheson	Date Reported :	:	11-23-10	
Soil Type	:	Reddish Orange Silty Sand				
Wet Density	:	123.2 pcf	Initial Height		5.80 in	1
Dry Density	:	109.3 pcf	Initial Diameter :	:	2.82 in	n
Moisture	:	12.7 %	Proving Ring :	:	#22734	
Deg. of Sat.		65.4 %	Specific Gravity :	:	2.652	
COMMENTS	:	AASHTO: T-208				

APPROVED BY: 04

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2 : Solar Farm Information & Welcome Center Site Design Project Name Project No. : 38001-1684-0438001-1684-04 Sample No. : ST - 3 Project County : Haywood Sample Loc. : Boring No 51 : Tennessee Sample Depth : 24.0' to 25.5' Project State Laboratory No.: 10217 Date Tested : 11-11-10 Submitted By : Florence & Hutcheson Date Reported : 11-23-10 : Reddish Orange Poorly Graded Sand with Silt Soil Type Initial Height : 5.86 in Wet Density 112.7 pcf : 102.6 pcf 2.82 in Initial Diameter : Dry Density : Moisture 9.8 % Proving Ring : #22734 : **RESULTS:** Corrected Unit Axial Load Area Strain Stress <u>#</u> lbs sf <u>%</u> Ksf 1 0.0 0.04 0.0 0.00 2 4.7 0.04 0.3 0.11 3 0.5 5.6 0.04 0.13 4 7.5 0.04 0.8 0.17 5 8.5 0.04 1.0 0.19 6 9.4 0.04 1.3 0.21 7 10.3 0.04 1.5 0.23 8 11.3 0.04 1.8 0.25 9 12.2 0.04 2.0 0.28 10 12.2 0.04 2.4 0.27 12.2 2.7 0.27 11 0.04 12.2 0.04 3.1 0.27 12 13 0.05 3.4 0.27 12.2 14 11.3 0.05 3.8 0.25 15 10.3 0.05 4.1 0.23 4.4 0.21 16 9.4 0.05


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

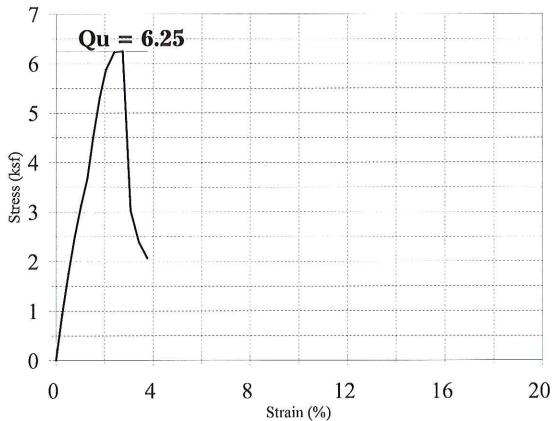
Project Name	:	Solar Farm Information & Welcome Center Site Design				
Project No.		38001-1684-0438001-1684-04	Sample No. :	: 1	ST - 3	
Project County	2	Haywood	Sample Loc. :	:]	Boring No_5	51
Project State	Į,	Tennessee	Sample Depth :	: :	24.0' to 25.5	0
Laboratory No.	- 2	10217	Date Tested :	:	11-11-10	
Submitted By	:	Florence & Hutcheson	Date Reported :	:	11-23-10	
Soil Type	I	Reddish Orange Poorly Graded Sand with Silt				
Soil Type Wet Density	:		Initial Height :	:	5.86 i	in
Wet Density		112.7 pcf	Initial Height : Initial Diameter :		5.86 i 2.82 i	
Wet Density	2	112.7 pcf	-	:		
Wet Density Dry Density	: :	112.7 pcf 102.6 pcf 9.8 %	Initial Diameter :	:	2.82 i	

APPROVED BY: ______

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

		UNCC				5510N 11	107		Page 1 of 2
Project Name :	Solar Farm	Informatio	on & Welcon	ne Center Site	Design				
Project No. :	38001-168	4-0438001-	-1684-04			Sample No. :	ST - 1		
Project County :	Haywood					Sample Loc. :	Boring No_	55	
Project State :	Tennessee					Sample Depth :	19.5' to 21.3	3'	
Laboratory No. :	10217					Date Tested :	11-04-10		
Submitted By :	Florence &	Hutcheson	ı			Date Reported :	11-23-10		
Soil Type :	Multicolor	Sandy Lea	n Clay						
Wet Density :	124.4	pcf				Initial Height:	5.85	in	
Dry Density :	108.7	pcf			Ir	nitial Diameter:	2.82	in	
Moisture :	14.5	%			0.1.01	Proving Ring :	#22734		
RESULTS:			Axial	Corrected	Unit				
			Load	Area	Strain	Stress			
		<u>#</u>	lbs	<u>sf</u>	<u>%</u>	<u>Ksf</u>			
		1	0.0	0.04	0.0	0.00			
		2	40.4	0.04	0.3	0.93			
		3	77.1	0.04	0.5	1.76			
		4	109.6	0.04	0.8	2.50			
		5	137.8	0.04	1.0	3.13			
		6	162.1	0.04	1.3	3.68			
		7	200.8	0.04	1.5	4.54			
		8	235.2	0.04	1.8	5.31			
		9	261.3	0.04	2.1	5.88			
		10	277.8	0.04	2.4	6.23			
		11	279.7	0.04	2.7	6.25			
		12	135.9	0.04	3.1	3.03			
		13	107.7	0.05	3.4	2.39			
		14	93.6	0.05	3.8	2.07			


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

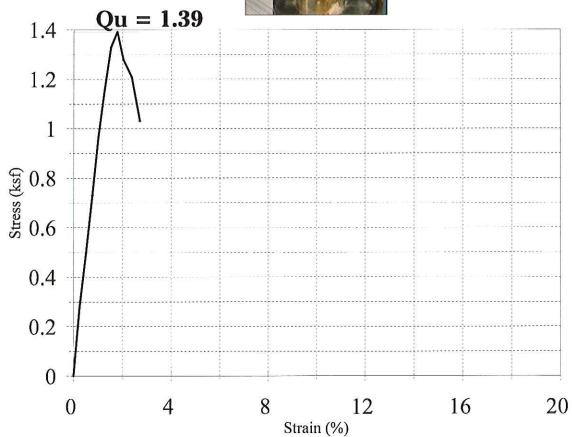
Project Name	į,	Solar Farm Information & Welcome Center Site Design					
Project No.	:	38001-1684-0438001-1684-04	Sample No. :	S	T - 1		
Project County	1	Haywood	Sample Loc. :	B	oring No_	55	
Project State	3	Tennessee	Sample Depth :	19	9.5' to 21.3	3'	
Laboratory No	e ŝ	10217	Date Tested :	11	1-04-10		
Submitted By	:	Florence & Hutcheson	Date Reported :	11	1-23-10		
Soil Type	:	Multicolor Sandy Lean Clay					
Soil Type Wet Density			Initial Height:		5.85	in	
~ 1	:	124.4 pcf	Initial Height : Initial Diameter :		5.85 2.82		
Wet Density	:	124.4 pcf 108.7 pcf					
Wet Density Dry Density	::	124.4 pcf 108.7 pcf 14.5 %	Initial Diameter :		2.82		

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

: Solar Farm Information & Welcome Center Site Design Project Name Project No. : 38001-1684-0438001-1684-04 Sample No. : ST - 2 Project County : Haywood Sample Loc. : Boring No 56 : Tennessee Sample Depth: 24.5' to 26.0' Project State Laboratory No.: 10217 Date Tested : 11-02-10 Submitted By : Florence & Hutcheson Date Reported : 11-23-10 Soil Type : Light Gray & Reddish Orange Silty, Clayey Sand 5.88 in Wet Density Initial Height: 111.1 pcf ŝ 2.82 in Dry Density 98.1 pcf Initial Diameter : : #22734 Moisture 13.3 % Proving Ring : : Unit **RESULTS:** Axial Corrected Load Area Strain Stress <u>#</u> lbs <u>sf</u> % Ksf 1 0.0 0.04 0.0 0.00 2 12.2 0.04 0.3 0.28 3 0.04 0.5 0.50 21.6 0.8 4 32.0 0.04 0.73 5 42.3 1.0 0.96 0.04 50.9 1.3 6 0.04 1.16 7 58.6 0.04 1.5 1.33 8 0.04 1.8 1.39 61.6 9 56.7 0.04 2.0 1.28 10 53.8 0.04 2.4 1.21 46.1 0.04 2.7 1.03 11


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

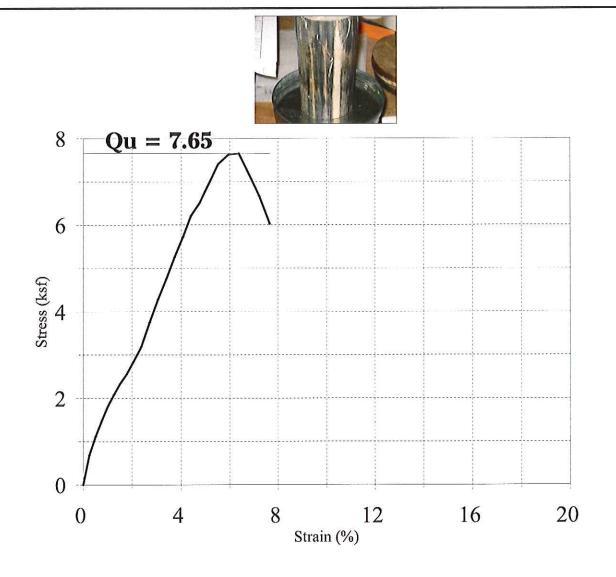
Page 2 of 2

Project Name :	Solar Farm Information & Welcome Center Site Desig	n	
Project No. :	38001-1684-0438001-1684-04	Sample No. :	ST - 2
Project County :	Haywood	Sample Loc. :	Boring No_56
Project State :	Tennessee	Sample Depth :	24.5' to 26.0'
Laboratory No. :	10217	Date Tested :	11-02-10
Submitted By :	Florence & Hutcheson	Date Reported :	11-23-10
Soil Type :	Light Gray & Reddish Orange Silty, Clayey Sand		
Wet Density :	111.1 pcf	Initial Height:	5.88 in
Dry Density :	98.1 pcf	Initial Diameter :	2.82 in
Moisture :	13.3 %	Proving Ring :	#22734
Deg. of Sat. :	51.3 %	Specific Gravity :	2.647
COMMENTS :	AASHTO: T-208		

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2 Solar Farm Information & Welcome Center Site Design Project Name : 38001-1684-0438001-1684-04 Sample No. : ST - 4 Project No. 1 Sample Loc. : Boring No 56 Project County : Haywood : Tennessee Sample Depth: 39.5' to 41.2' Project State Laboratory No.: 10217 Date Tested : 11-03-10 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson : Light Gray Lean Clay with Sand Soil Type 5.88 in Initial Height: Wet Density 135.4 pcf : Initial Diameter : 2.83 in Dry Density • 115.3 pcf #22734 Moisture 17.4 % Proving Ring : 2 **RESULTS:** Axial Corrected Unit Strain Stress Load Area <u>#</u> <u>%</u> <u>Ksf</u> lbs sf 0.0 0.00 1 0.0 0.04 2 30.1 0.04 0.3 0.69 3 48.9 0.04 0.5 1.12 65.4 0.04 0.8 1.49 4 5 80.0 0.04 1.0 1.82 6 92.6 0.04 1.3 2.10 7 104.0 0.04 1.5 2.35 8 113.4 0.04 1.8 2.55 9 125.6 0.04 2.0 2.82 2.4 3.19 10 142.5 0.04 168.0 0.04 2.7 3.75 11 0.04 3.1 4.28 12 192.4 13 214.7 0.05 3.4 4.76 14 238.0 0.05 3.7 5.26 260.3 5.73 15 0.05 4.1 16 283.6 0.05 4.4 6.22 17 297.8 0.05 4.8 6.51 18 317.4 0.05 5.1 6.91 19 341.8 0.05 5.5 7.41 6.0 7.62 20 353.4 0.05 7.65 21 356.2 0.05 6.4 334.9 6.8 7.16 22 0.05 23 313.3 0.05 7.2 6.67 24 284.6 0.05 7.7 6.03



CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

Project Name	2	Solar Farm Information & Welcome Center Site Design			
Project No.	5	38001-1684-0438001-1684-04	Sample No.		ST - 4
Project County	1	Haywood	Sample Loc.		Boring No_56
Project State	1	Tennessee	Sample Depth	ŝ	39.5' to 41.2'
Laboratory No		10217	Date Tested	ţ.	11-03-10
Submitted By	1	Florence & Hutcheson	Date Reported	;	11-23-10
Soil Type	1	Light Gray Lean Clay with Sand			
Wet Density	2	135.4 pcf	Initial Height		5.88 in
Dry Density	:	115.3 pcf	Initial Diameter		2.83 in
Moisture	:	17.4 %	Proving Ring	1	#22734
					0 (0
Deg. of Sat.	;	100.0 %	Specific Gravity	1	2.650

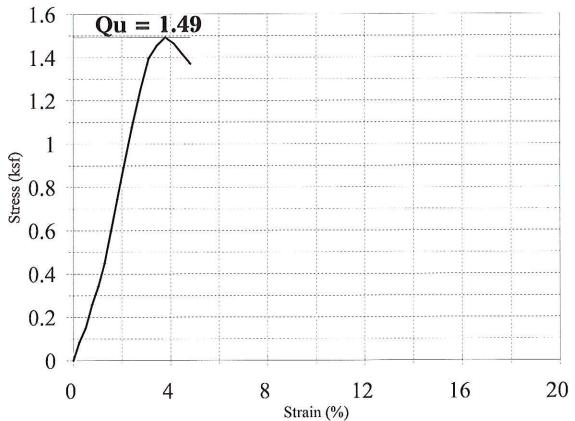
APPROVED BY: bc

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

: Solar Farm Information & Welcome Center Site Design Project Name Project No. : 38001-1684-0438001-1684-04 Sample No. : ST - 1 Project County : Haywood Sample Loc. : Boring No 57 Project State : Tennessee Sample Depth: 14.9' to 15.5' Laboratory No.: 10217 Date Tested : 11-12-10 Submitted By : Florence & Hutcheson Date Reported : 11-23-10 Soil Type : Brown Silty Clay Wet Density 130.9 pcf Initial Height: 5.80 in : 2.82 in Dry Density 107.1 pcf Initial Diameter : : Moisture 22.2 % **Proving Ring** : #22734 : **RESULTS:** Axial Corrected Unit Load Area Strain Stress <u>#</u> lbs sf <u>%</u> <u>Ksf</u> 1 0.0 0.04 0.0 0.00 2 3.8 0.04 0.3 0.09 3 0.04 0.5 6.6 0.15 0.8 4 11.3 0.04 0.26 5 0.34 15.0 0.04 1.0 19.7 1.3 6 0.04 0.45 7 26.3 0.04 1.6 0.60 0.04 1.8 8 32.9 0.74 9 39.5 0.04 2.1 0.89 10 48.0 0.04 2.4 1.08 0.04 2.8 1.25 11 55.7 12 62.5 0.04 3.1 1.40 13 0.04 3.4 1.46 65.4 14 67.4 0.05 3.8 1.49 15 66.4 0.05 4.1 1.47 64.5 4.5 1.42 16 0.05 17 62.5 0.05 4.8 1.37


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

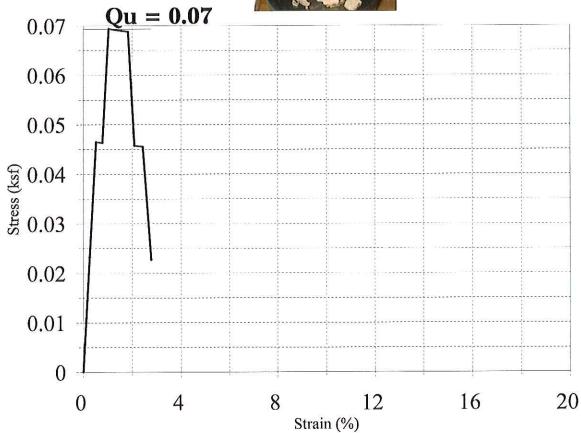
Project Name	1:	Solar Farm Information & Welcome Center Site Design				
Project No.	:	38001-1684-0438001-1684-04	Sample No.	:	ST - 1	
Project County	· :	Haywood	Sample Loc.	:	Boring No_57	
Project State	:	Tennessee	Sample Depth	:	14.9' to 15.5'	
Laboratory No	. :	10217	Date Tested	:	11-12-10	
Submitted By	:	Florence & Hutcheson	Date Reported	:	11-23-10	
Soil Type	:	Brown Silty Clay				
Wet Density	:	130.9 pcf	Initial Height	1	5.80 in	
Dry Density	:	107.1 pcf	Initial Diameter	1	2.82 in	
Moisture	:	22.2 %	Proving Ring	:	#22734	
Deg. of Sat.	:	100.0 %	Specific Gravity	:	2.681	
COMMENTS	5 :	AASHTO: T-208				

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

Project Name	:	Solar Farm Informat	ion & Welcon	me Center Site	Design				
Project No.	÷	38001-1684-043800	1-1684-04			Sample No. :	ST - 5		
Project County	1	Haywood				Sample Loc. :		Sec.	
Project State	÷	Tennessee				Sample Depth :	44.5' to 45.	0'	
Laboratory No.	•	10217				Date Tested :			
Submitted By	ŝ	Florence & Hutchese				Date Reported :	11-23-10		
Soil Type	:	White & Yellow Ora	ange Poorly C	Graded Sand w	ith Silt				
Wet Density	•	115.0 pcf				Initial Height :			
Dry Density		99.2 pcf			In	itial Diameter :		in	
Moisture	ž	15.8 %				Proving Ring :	#22734		
RESULTS:			Axial	Corrected	Unit				
			Load	Area	Strain	Stress			
		<u>#</u>	lbs	<u>sf</u>	<u>%</u>	<u>Ksf</u>			
		1	0.0	0.04	0.0	0.00			
		2	0.9	0.04	0.3	0.02			
		3	1.9	0.04	0.5	0.05			
		4	1.9	0.04	0.8	0.05			
		5	2.8	0.04	1.0	0.07			
		6	2.8	0.04	1.3	0.07			
		7	2.8	0.04	1.6	0.07			
		8	2.8	0.04	1.8	0.07			
		9	1.9	0.04	2.1	0.05			
		10	1.9	0.04	2.4	0.05			
		11	0.9	0.04	2.8	0.02			


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

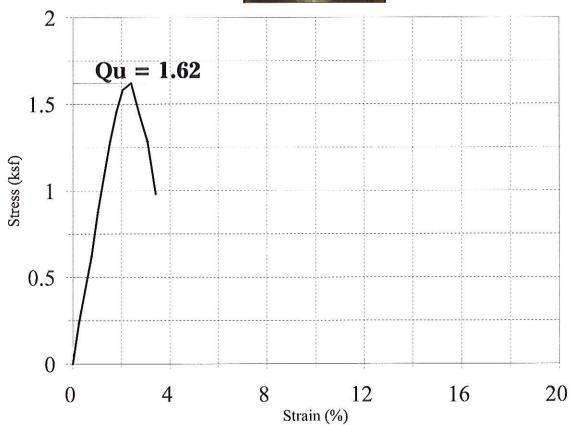
Page 2 of 2

Project Name	1	Solar Farm Information & Welcome Center Site Design		
Project No.	:	38001-1684-0438001-1684-04	Sample No. :	: ST - 5
Project County		Haywood	Sample Loc. :	: Boring No_56
Project State	:	Tennessee	Sample Depth :	: 44.5' to 45.0'
Laboratory No	. :	10217	Date Tested :	: 11-03-10
Submitted By	:	Florence & Hutcheson	Date Reported :	: 11-23-10
Soil Type	:	White & Yellow Orange Poorly Graded Sand with Silt		
Wet Density	:	115.0 pcf	Initial Height :	: 5.75 in
Dry Density	:	99.2 pcf	Initial Diameter :	: 2.72 in
Moisture	:	15.8 %	Proving Ring :	: #22734
Deg. of Sat.	:	63.3 %	Specific Gravity :	: 2.642
COMMENTS		AASHTO: T-208		

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2 Project Name Solar Farm Information & Welcome Center Site Design : Project No. 38001-1684-0438001-1684-04 Sample No. : ST - 2 1 Project County : Haywood Sample Loc. : Boring No 58 : Tennessee Sample Depth: 32.7' to 34.2' Project State Laboratory No.: 10217 Date Tested : 11-11-10 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson Soil Type White & Gray Sandy Lean Clay : 5.85 in Wet Density 130.0 pcf Initial Height: : 2.82 in Dry Density 107.6 pcf Initial Diameter : : 20.8 % Proving Ring : #22734 Moisture 1 **RESULTS:** Axial Corrected Unit Load Area Strain Stress <u>#</u> lbs sf % <u>Ksf</u> 0.0 0.00 1 0.0 0.04 2 10.3 0.04 0.3 0.24 3 0.5 0.43 18.8 0.04 4 27.3 0.04 0.8 0.62 5 38.5 0.04 1.0 0.88 1.3 6 48.0 0.04 1.09 1.5 7 56.7 0.04 1.28 8 64.5 0.04 1.8 1.46 9 70.3 0.04 2.1 1.58 10 72.2 0.04 2.4 1.62 2.7 11 64.5 0.04 1.44 12 57.7 0.04 3.1 1.29 44.2 0.05 3.4 0.98 13


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

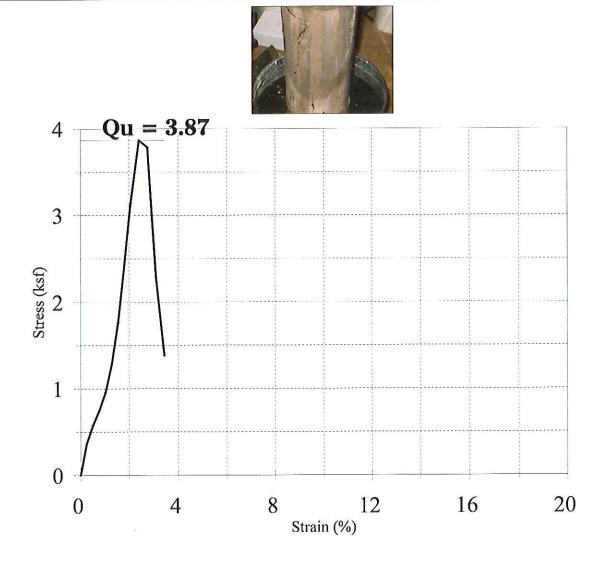
Project Name	:	Solar Farm Information & Welcome Center Site Design		
Project No.	1	38001-1684-0438001-1684-04	Sample No. :	: ST - 2
Project County	1 :	Haywood	Sample Loc. :	: Boring No_58
Project State	:	Tennessee	Sample Depth :	: 32.7' to 34.2'
Laboratory No). :	10217	Date Tested :	: 11-11-10
Submitted By		Florence & Hutcheson	Date Reported :	: 11-23-10
Soil Type	:	White & Gray Sandy Lean Clay		
Wet Density	:	130.0 pcf	Initial Height :	: 5.85 in
Dry Density		107.6 pcf	Initial Diameter :	: 2.82 in
Moisture	:	20.8 %	Proving Ring :	#22734
Deg. of Sat.		100.0 %	Specific Gravity :	2.675
COMMENTS	3 :	AASHTO: T-208		

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

: Solar Farm Information & Welcome Center Site Design Project Name : 38001-1684-0438001-1684-04 Sample No. : ST - 1 Project No. Sample Loc. : Boring No_59 Project County : Haywood Sample Depth: 19.1' to 20.9' Project State : Tennessee Date Tested : 11-11-10 Laboratory No.: 10217 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson : Gray Lean Clay with Sand Soil Type Initial Height: 5.81 in 125.5 pcf Wet Density : 2.83 in Initial Diameter : Dry Density 99.1 pcf Proving Ring : #22734 Moisture 26.6 % : **RESULTS:** Axial Corrected Unit Load Strain Stress Area <u>#</u> lbs sf % Ksf 0.0 0.00 1 0.0 0.04 2 0.3 0.37 16.0 0.04 3 0.5 0.58 25.4 0.04 4 32.9 0.04 0.8 0.75 1.0 0.96 5 42.3 0.04 1.3 6 56.7 0.04 1.28 1.76 7 78.0 0.04 1.5 8 107.7 0.04 1.8 2.43 9 139.7 0.04 2.1 3.14 172.9 0.04 2.4 3.87 10 11 169.9 0.04 2.8 3.79 2.29 103.0 0.04 3.1 12 0.05 3.4 1.38 13 62.5



CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

Project Name	2	Solar Farm Information & Welcome Center Site Design		
Project No.	:	38001-1684-0438001-1684-04	Sample No. :	ST - 1
Project County	: ;	Haywood	Sample Loc. :	Boring No_59
Project State		Tennessee	Sample Depth :	19.1' to 20.9'
Laboratory No). :	10217	Date Tested :	11-11-10
Submitted By	:	Florence & Hutcheson	Date Reported :	11-23-10
Soil Type	:	Gray Lean Clay with Sand		
Wet Density	:	125.5 pcf	Initial Height :	5.81 in
Dry Density	:	99.1 pcf	Initial Diameter :	2.83 in
Moisture	:	26.6 %	Proving Ring :	#22734
Deg. of Sat.	:	100.0 %	Specific Gravity :	2.669
COMMENTS	S :	AASHTO: T-208		

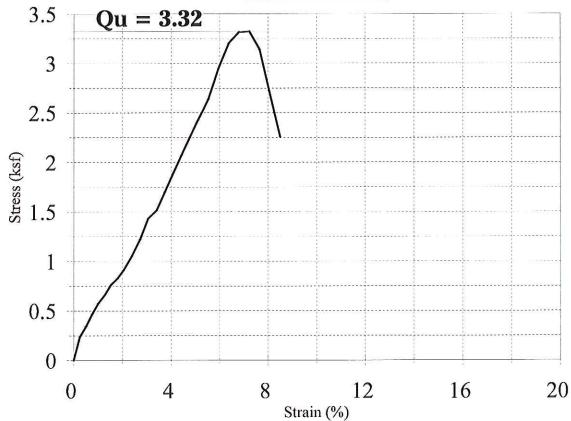
APPROVED BY: ______

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

							Tage TOT2
	Solar Farm Information		ne Center Site I	Design	121 121 Active 114		
	38001-1684-0438001-16	684-04			Sample No. : S		
Project County :					Sample Loc. : I		
(1) A set provide the set of t	Tennessee				Sample Depth : 3		
Laboratory No. :					Date Tested : 1		
Submitted By :	Florence & Hutcheson				Date Reported : 1	1-23-10	
	White, Gray & Reddish	Orange S	andy Silty Clay				
Wet Density :					Initial Height:	5.87 in	
Dry Density :				I	nitial Diameter :	2.83 in	
Moisture :	16.4 %				Proving Ring :	#22734	
RESULTS:		Axial	Corrected	Unit			
		Load	Area	Strain			
	<u>#</u> 1	<u>lbs</u>	<u>sf</u>	<u>%</u>	<u>Ksf</u>		
		0.0	0.04	0.0	0.00		
	2	10.3	0.04	0.3	0.24		
	3	15.0	0.04	0.5	0.34		
	4	20.7	0.04	0.8	0.47		
	5	25.4	0.04	1.0	0.58		
	6	29.1	0.04	1.3	0.66		
	7	33.8	0.04	1.5	0.76		
	8	36.7	0.04	1.8	0.83		
	9	40.4	0.04	2.0	0.91		
	10	47.0	0.04	2.4	1.05		
	11	54.8	0.04	2.7	1.22		
	12	64.5	0.04	3.1	1.43		
	13	68.3	0.05	3.4	1.51		
	14	77.1	0.05	3.7	1.70		
	15	85.8	0.05	4.1	1.89		
	16	94.5	0.05	4.4	2.07		
	17	103.0	0.05	4.8	2.25		
	18	111.5	0.05	5.1	2.43		
	19	121.8	0.05	5.5	2.64		
	20	136.9	0.05	6.0	2.95		
	21	149.4	0.05	6.4	3.21		
	22	155.2	0.05	6.8	3.32		
	23	156.2	0.05	7.2	3.32		
	24	148.4	0.05	7.7	3.14		
	25	127.5	0.05	8.1	2.69		
	26	107.7	0.05	8.5	2.26		


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

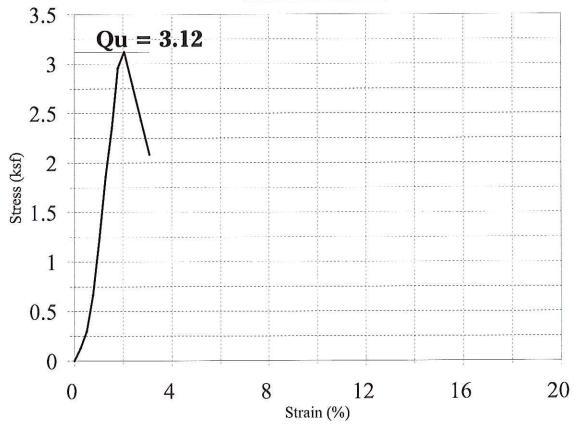
Project Name	1	Solar Farm Information & Welcome Center Site Design			
Project No.	3	38001-1684-0438001-1684-04	Sample No. :	ST - 4	
Project County		Haywood	Sample Loc. :	Boring No_	60
Project State	5	Tennessee	Sample Depth :	39.2' to 40.4	4'
Laboratory No.	s I	10217	Date Tested :	11-12-10	
Submitted By	2	Florence & Hutcheson	Date Reported :	11-23-10	
Soil Type	:	White, Gray & Reddish Orange Sandy Silty Clay			
Wet Density			* *** * *** * * *	C 07	1
wet Density		129.6 pcf	Initial Height :	5.87	111
Dry Density	:	-	Initial Height : Initial Diameter :		
Concerning of the second second				2.83	
Dry Density		111.3 pcf 16.4 %	Initial Diameter :	2.83 #22734	

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

Solar Farm Information & Welcome Center Site Design Project Name 2 Sample No. : ST - 2 38001-1684-0438001-1684-04 Project No. : Sample Loc. : Boring No 63 Project County : Haywood Sample Depth: 35.0' to 36.1' Project State : Tennessee Laboratory No.: 10217 Date Tested : 11-03-10 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson : Brown Lean Clay with Sand Soil Type 5.84 in Initial Height: Wet Density 121.2 pcf ł 2.82 in Initial Diameter : Dry Density 2 97.7 pcf Proving Ring : #22734 Moisture 24.1 % 2 **RESULTS:** Axial Corrected Unit Strain Stress Load Area <u>#</u> lbs <u>%</u> <u>Ksf</u> sf 0.0 0.00 1 0.0 0.04 2 5.6 0.04 0.3 0.13 3 0.04 0.5 0.30 13.2 4 29.1 0.04 0.8 0.66 5 1.22 53.8 0.04 1.0 6 81.9 0.04 1.3 1.86 7 104.0 0.04 1.5 2.35 8 131.2 0.04 1.8 2.96 9 138.7 0.04 2.1 3.12 0.04 2.4 2.77 10 123.7 108.7 0.04 2.7 2.43 11 0.04 3.1 2.08 12 93.6


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

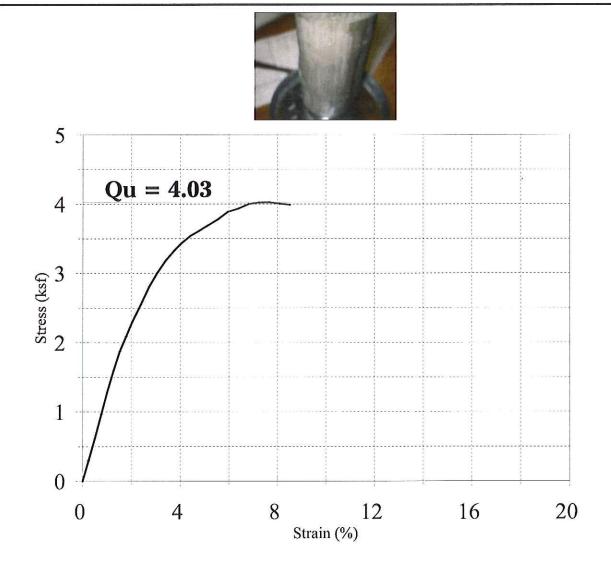
Project Name	:	Solar Farm Information & Welcome Center Site Design	R			
Project No.	:	38001-1684-0438001-1684-04	Sample No. :		ST - 2	
Project County	:	Haywood	Sample Loc. :	1	Boring No_63	
Project State	:	Tennessee	Sample Depth :		35.0' to 36.1'	
Laboratory No.	:	10217	Date Tested :	:	11-03-10	
Submitted By	ł	Florence & Hutcheson	Date Reported :	:	11-23-10	
Soil Type	:	Brown Lean Clay with Sand				
Wet Density	;	121.2 pcf	Initial Height:	:	5.84 in	
Dry Density	÷	97.7 pcf	Initial Diameter :	:	2.82 in	
Moisture	ł	24.1 %	Proving Ring :	:	#22734	
Deg. of Sat.	÷	92.9 %	Specific Gravity :	;	2.635	
COMMENTS	•	AASHTO: T-208				

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

: Solar Farm Information & Welcome Center Site Design Project Name Sample No. : ST - 3 38001-1684-0438001-1684-04 Project No. ; Sample Loc. : Boring No 63 Project County : Haywood Sample Depth: 45.0' to 46.1' Project State : Tennessee Laboratory No.: 10217 Date Tested : 11-03-10 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson Soil Type : Gray Sandy Lean Clay 5.87 in 124.7 pcf Initial Height: Wet Density : 2.82 in Initial Diameter : Dry Density 96.7 pcf **Proving Ring** : #22734 Moisture 29.0 % : **RESULTS:** Axial Corrected Unit Strain Stress Load Area <u>#</u> lbs sf % <u>Ksf</u> 0.0 0.00 1 0.0 0.04 2 0.3 0.30 13.2 0.04 3 0.5 27.3 0.04 0.62 4 42.3 0.04 0.8 0.97 56.7 1.0 1.29 5 0.04 6 70.3 0.04 1.3 1.60 7 82.9 0.04 1.5 1.88 8 92.6 0.04 1.8 2.09 9 102.1 0.04 2.0 2.30 10 0.04 2.4 2.55 113.4 125.6 0.04 2.7 2.81 11 12 135.0 0.04 3.1 3.01 0.04 3.4 3.19 13 143.5 3.7 3.33 14 150.3 0.05 4.1 15 3.45 156.2 0.05 16 161.1 0.05 4.4 3.54 17 165.0 0.05 4.8 3.62 18 169.0 0.05 5.1 3.69 19 173.9 0.05 5.5 3.78 6.0 3.89 20 179.7 0.05 182.7 0.05 6.4 3.93 21 4.00 22 0.05 6.8 186.6 23 188.6 0.05 7.2 4.02 24 189.5 0.05 7.7 4.03 25 189.5 0.05 8.1 4.01 26 189.5 0.05 8.5 3.99



CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

Project Name : Solar Farm Information & Welcome Center Site Design	
Project No. : 38001-1684-0438001-1684-04	Sample No. : ST - 3
Project County : Haywood	Sample Loc. : Boring No_63
Project State : Tennessee	Sample Depth : 45.0' to 46.1'
Laboratory No.: 10217	Date Tested : 11-03-10
Submitted By : Florence & Hutcheson	Date Reported : 11-23-10
Soil Type : Gray Sandy Lean Clay	
Wet Density : 124.7 pcf	Initial Height : 5.87 in
Dry Density : 96.7 pcf I	nitial Diameter : 2.82 in
Moisture : 29.0 %	Proving Ring : #22734
Deg. of Sat. : 100.0 % S	pecific Gravity : 2.668
COMMENTS : AASHTO: T-208	

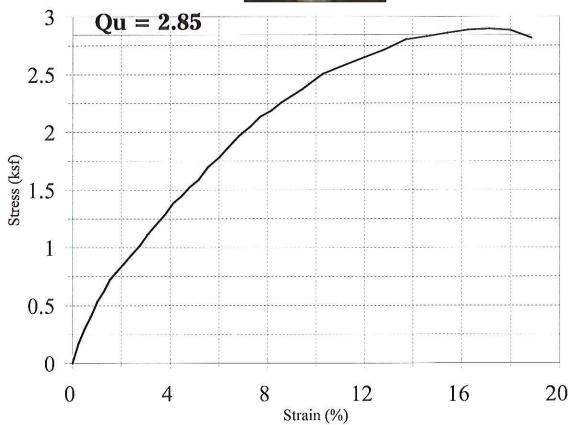
CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

......

Page 1 of 2

					115 D			Page 1 of 2
Project Name	:	Solar Farm Information		me Center Site	Design	20 1 10 12/10		
Project No.		38001-1684-0438001-16	684-04			Sample No. :		
Project County							Boring No_64	
Project State		Tennessee			S	ample Depth :		
Laboratory No.						Date Tested :	10-31-10	
Submitted By	:	Florence & Hutcheson			D	ate Reported :	11-23-10	
Soil Type	:	Beige & Tan Lean Clay	with Sand	1				
Wet Density	:	122.3 pcf]	Initial Height:	5.83 in	
Dry Density	:	99.0 pcf			Ini	tial Diameter :	2.82 in	
Moisture		23.5 %				Proving Ring :	#22734	
RESULTS:			Axial	Corrected	Unit			
			Load	Area	Strain	Stress		
		<u>#</u>	<u>lbs</u>	<u>sf</u>	<u>%</u>	Ksf		
		1	0.0	0.04	0.0	0.00		
		2	7.5	0.04	0.3	0.17		
		3	13.2	0.04	0.5	0.30		
		4	17.9	0.04	0.8	0.41		
		5	23.5	0.04	1.0	0.54		
		6	27.3	0.04	1.3	0.62		
		7	32.0	0.04	1.5	0.73		
		8	34.8	0.04	1.8	0.79		
		9	37.6	0.04	2.1	0.85		
		10	41.4	0.04	2.4	0.93		
		11	45.1	0.04	2.7	1.01		
		12	49.9	0.04	3.1	1.12		
		12	53.8	0.04	3.4	1.20		
		13	57.7	0.04	3.8	1.28		
		15	62.5	0.04	4.1	1.38		
		16	65.4	0.05	4.5	1.44		
		10	69.3	0.05	4.8	1.52		
		18	72.2	0.05	5.1	1.58		
		18	78.0	0.05	5.6	1.70		
		20	81.9	0.05	6.0	1.78		
		21	86.8	0.05	6.4	1.88		
		22	91.6	0.05	6.9	1.97		
		23	95.5	0.05	7.3	2.05		
		24	100.2	0.05	7.7	2.14		
		25	103.0	0.05	8.1	2.19		
		26	106.8	0.05	8.6	2.26		
		27	113.4	0.05	9.4	2.37		
		28	120.9	0.05	10.3	2.50		
		29	125.6	0.05	11.1	2.58		
		30	130.3	0.05	12.0	2.65		
		31	135.0	0.05	12.9	2.72		
		32	140.6	0.05	13.7	2.80		
		33	143.5	0.05	14.6	2.83		
		34	146.4	0.05	15.4	2.86		
		35	149.4	0.05	16.3	2.89		
		36	151.3	0.05	17.2	2.90		
		37 38	152.3 150.3	0.05 0.05	18.0 18.9	2.88 2.82		


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

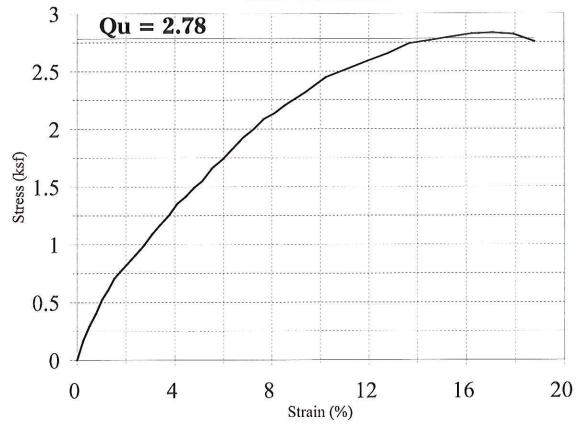
Project Name	÷	Solar Farm Information & Welcome Center Site Design			
Project No.	ŝ	38001-1684-0438001-1684-04	Sample No. :		ST - 1
Project County	1	Haywood	Sample Loc. :		Boring No_64
Project State	1	Tennessee	Sample Depth :		15.0' to 16.6'
Laboratory No.	2	10217	Date Tested :	0.000	10-31-10
Submitted By	:	Florence & Hutcheson	Date Reported :		11-23-10
Soil Type	ţ	Beige & Tan Lean Clay with Sand			
Wet Density	2	122.3 pcf	Initial Height :		5.83 in
Dry Density	2	99.0 pcf	Initial Diameter :		2.82 in
Moisture	5	23.5 %	Proving Ring :		#22734
Deg. of Sat.	ŝ	95.2 %	Specific Gravity :		2.604
COMMENTS	•	AASHTO: T-208			

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2

								Page 1 of 2
Project Name		Solar Farm Informatio		ne Center Site I	Design			
Project No.		38001-1684-0438001-	1684-04			Sample No. :		
Project County						Sample Loc. :		
Project State		Tennessee			S	ample Depth :		
Laboratory No.	÷	10217				Date Tested :		
Submitted By	:	Florence & Hutcheson	1		D	ate Reported :	11-23-10	
Soil Type	:	Gray & Yellowish Ora	ange Lean C	Clay with Sand				
Wet Density	:	124.5 pcf			8	Initial Height :	5.85 in	
Dry Density	1	99.5 pcf			Ini	tial Diameter :	2.85 in	
Moisture	1	25.1 %			1	Proving Ring :	#22734	
RESULTS:			Axial	Corrected	Unit			
			Load	Area	Strain	Stress		
		<u>#</u>	<u>lbs</u>	<u>sf</u>	<u>%</u>	Ksf		
		1	0.0	0.04	0.0	0.00		
		2	7.5	0.04	0.3	0.17		
		3	13.2	0.04	0.5	0.30		
		4	17.9	0.04	0.8	0.40		
		5	23.5	0.04	1.0	0.53		
		6	27.3	0.04	1.3	0.61		
		7	32.0	0.04	1.5	0.71		
		8	34.8	0.05	1.8	0.77		
		9	37.6	0.05	2.1	0.83		
		10	41.4	0.05	2.4	0.91		
		11	45.1	0.05	2.7	0.99		
		12	49.9	0.05	3.1	1.09		
		13	53.8	0.05	3.4	1.17		
		14	57.7	0.05	3.8	1.25		
		15	62.5	0.05	4.1	1.35		
		16	65.4	0.05	4.4	1.41		
		17	69.3	0.05	4.8	1.49		
		18	72.2	0.05	5.1	1.55		
		19	78.0	0.05	5.6	1.66		
		20	81.9	0.05	6.0	1.74		
		20	86.8	0.05	6.4	1.83		
		21	91.6	0.05	6.8	1.93		
		22	95.5	0.05	7.3	2.00		
		23	100.2	0.05	7.7	2.00		
		24	103.0	0.05	8.1	2.14		
		26	106.8	0.05	8.5	2.20		
		20	113.4	0.05	9.4	2.32		
		28	120.9	0.05	10.3	2.45		
		28	120.9	0.05	11.1	2.52		
		30	123.0	0.05	12.0	2.52		
		30	130.3	0.05	12.0	2.66		
		31	133.0	0.05	12.8	2.00		
				0.05	14.5	2.74		
		33	143.5					
		34	146.4	0.05	15.4	2.80		
		35	149.4	0.05	16.2	2.82		
		36	151.3	0.05	17.1	2.83		
		37	152.3	0.05	17.9	2.82		
		38	150.3	0.05	18.8	2.76		


CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

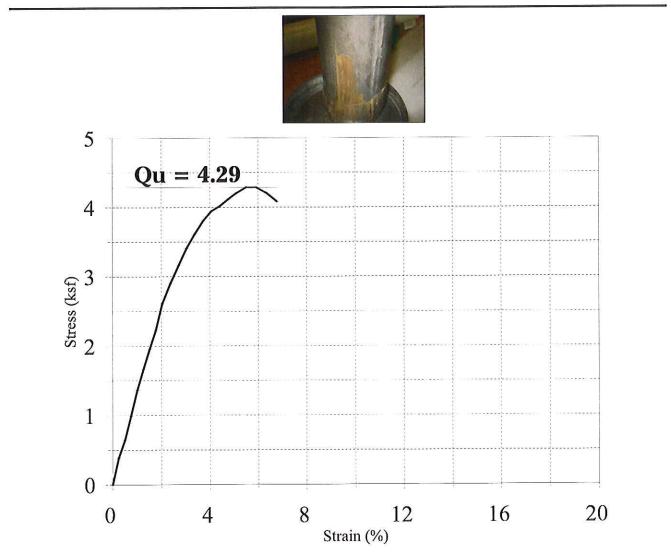
Page 2 of 2

Project Name	: Solar Farm Information & Welcome Center Site Design		
Project No.	: 38001-1684-0438001-1684-04	Sample No. :	ST - 1
Project County	: Haywood		Boring No_66
Project State	: Tennessee	Sample Depth:	19.7' to 20.8'
Laboratory No.	: 10217	Date Tested :	10-31-10
Submitted By	: Florence & Hutcheson	Date Reported :	11-23-10
Soil Type	: Gray & Yellowish Orange Lean Clay with Sand		
Wet Density	104.6		
	: 124.5 pcf	Initial Height:	5.85 in
		Initial Height : Initial Diameter :	
			2.85 in
Dry Density	: 99.5 pcf	Initial Diameter :	2.85 in

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 1 of 2


: Solar Farm Information & Welcome Center Site Design Project Name 38001-1684-0438001-1684-04 Sample No. : ST - 2 Project No. : Sample Loc. : Boring No 68 Project County : Haywood Sample Depth : 29.5' to 30.3' Project State : Tennessee Laboratory No.: 10217 Date Tested : 10-31-10 Date Reported : 11-23-10 Submitted By : Florence & Hutcheson : Light Gray Sandy Lean Clay Soil Type 5.89 in Initial Height: 120.9 pcf Wet Density ŝ. 2.82 in Initial Diameter : Dry Density 1 97.4 pcf Proving Ring : #22734 Moisture 24.1 % 5 Corrected Unit **RESULTS:** Axial Strain Stress Load Area % <u>Ksf</u> <u>#</u> lbs sf 1 0.0 0.04 0.0 0.00 2 16.9 0.04 0.3 0.39 3 0.5 0.65 28.2 0.04 43.2 0.8 0.99 4 0.04 1.36 5 59.6 1.0 0.04 6 73.2 0.04 1.3 1.67 7 85.8 0.04 1.5 1.95 8 98.3 0.04 1.8 2.23 9 115.2 0.04 2.0 2.61 2.4 2.90 10 128.4 0.04 140.6 0.04 2.7 3.16 11 3.1 3.41 152.3 0.04 12 13 162.1 0.04 3.4 3.62 3.81 170.9 0.04 3.7 14 3.94 15 177.8 0.05 4.1 16 181.7 0.05 4.4 4.02 186.6 0.05 4.8 4.11 17 18 191.5 0.05 5.1 4.20 19 196.2 0.05 5.5 4.29 4.29 5.9 20 197.1 0.05 4.21 21 194.3 0.05 6.4 4.09 6.8 189.5 0.05 22

CONSULTING ENGINEERS

UNCONFINED COMPRESSION TEST

Page 2 of 2

Project Name	Solar Farm Infor	mation & Welcome Center Site De	sign	
	38001-1684-043		Sample No. : ST - 2	
Project County	Haywood		Sample Loc. : Boring No_68	
Project State	Fennessee		Sample Depth : 29.5' to 30.3'	
Laboratory No	10217		Date Tested : 10-31-10	
Submitted By	Florence & Hutc	heson	Date Reported : 11-23-10	
Soil Type	Light Gray Sand	y Lean Clay		
Wet Density	120.9 pcf		Initial Height : 5.89 in	
Dry Density	97.4 pcf		Initial Diameter : 2.82 in	
Moisture	24.1 %		Proving Ring : #22734	
Deg. of Sat.	92.3 %		Specific Gravity : 2.635	
COMMENTS	AASHTO: T-20	8		

CONSULTING ENGINEERS

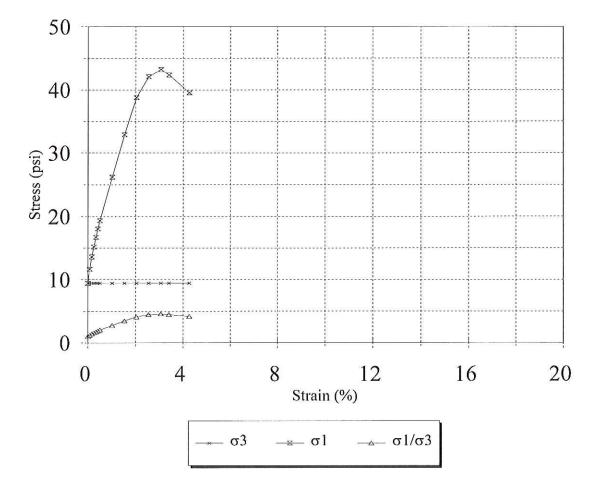
TRIAXIAL COMPRESSION TEST

Page 1 of 3

					ragerors
Project Name : Sol	lar Farm Infori	nation & Welco	me Center Site D	esign	
Project No. : 380	001-1684-0438	8001-1684-04		Point No. : 1	
Project County : Ha	Sample Loc. : Be	oring No_47			
Project State : Ter	Sample Depth : 20).0' to 21.7'			
Laboratory No. : 102	217			Date Tested : 10)-31-10
Submitted By : Flo	rence & Hutch	neson		Date Reported : 11	-23-10
Soil Type : Beige & Y	ellowish Orar	nge Lean Clay w	ith Sand		
Wet Density : 125.3 pcf		Delta Height	t:NA	Initial Heig	ght : 14.87 cm
Dry Density : 99.3 pcf		Delta Volume	: :NA	Initial Diame	ter : 7.21 cm
Moisture : 26.1 %	Ch	amber Pressure.	. : 9.4 psi	Init. Pore Pr	es. :NA
RESULTS:					
	εа	σ 3 (psi)	σ1 (psi)	σ1/σ3	
1	0.00	9.43	9.43	1.00	
2	0.09	9.43	11.64	1.23	
3	0.17	9.43	13.63	1.44	
4	0.26	9.43	15.17	1.61	
5	0.34	9.43	16.71	1.77	
6	0.43	9.43	18.02	1.91	
7	0.51	9.43	19.34	2.05	
8	1.02	9.43	26.21	2.78	
9	1.54	9.43	32.93	3.49	
10	2.05	9.43	38.82	4.11	
11	2.56	9.43	42.10	4.46	
12	3.07	9.43	43.25	4.58	
13	3.42	9.43	42.38	4.49	
14	4.27	9.43	39.57	4.19	

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST


Page 2 of 3

Project Name : Solar Farm Information & Welcome Center Site Design
Project No. : 38001-1684-0438001-1684-04PointProject County : HaywoodSample LProject State : TennesseeSample DeLaboratory No. : 10217Date TesSubmitted By : Florence & HutchesonDate Report

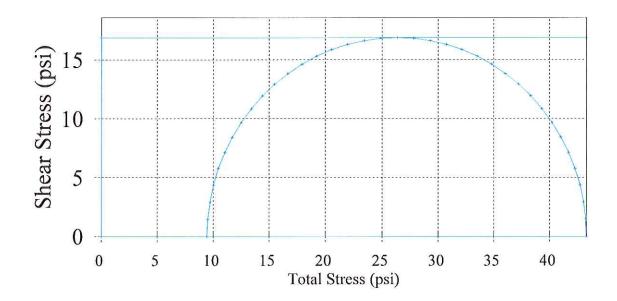
Point No. : 1 Sample Loc. : Boring No_47 Sample Depth : 20.0' to 21.7' Date Tested : 10-31-10 Date Reported : 11-23-10

Final Moisture : 26.1 % Final Height : 14.23 cm Final Diameter : 7.37 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 9.43 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 % Init.Void Ratio : 0.6455 Final Void Ratio : 0.6455 Specific Gravity : 2.618 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3


Project Name	: Solar Farm Information & Welcome Cente	r Site Design
Project No.	: 38001-1684-0438001-1684-04	
Project County	: Haywood	Sample Loc. : Boring No_47
Project State	: Tennessee	Sample Depth : 20.0' to 21.7'
Laboratory No.	: 10217	Date Tested : 10-31-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-23-10
COEFFICIENT OF INTER	RNAL FRICTION AND COHESION BY TH	HE METHOD OF LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 4870	psf
1	9.43	43.25	Cohesion = 2435	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

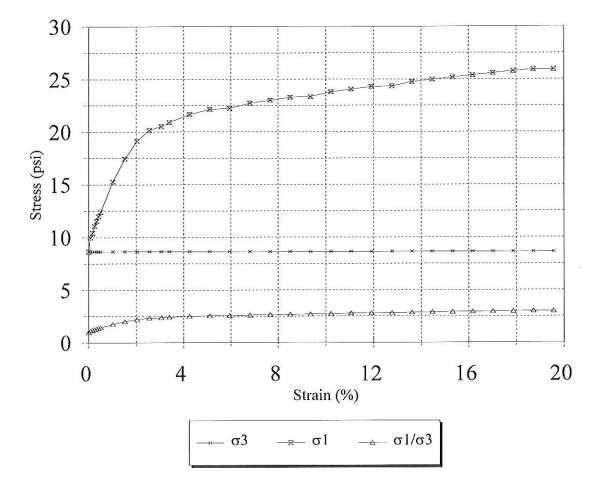
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 1 of 3

				Page 1 of 3	
Project Name : Sola	ar Farm Infori	nation & Welco	me Center Site D	esign	
Project No. : 38001-1684-0438001-1684-04				Point No. : 1	
Project County : Haywood				Sample Loc. : Boring No_56	
Project State : Tennessee				Sample Depth : 19.5' to 20.4'	
Laboratory No. : 10217				Date Tested : 11-04-10	
Submitted By : Florence & Hutcheson				Date Reported : 11-24-10	
Soil Type : Orange Lea					
Wet Density : 124.4 pcf Delta Height : NA			:NA	Initial Height : 14.92 cm	
Dry Density : 94.9 pcf		Delta Volume		Initial Diameter : 7.18 cm	
Moisture : 31.1 %	Chamber Pressure. : 8.6 psi			Init. Pore Pres. : NA	
RESULTS:			R 3		
	Е а	σ 3 (psi)	σ1 (psi)	σ1 / σ3	
1	0.00	8.64	8.64	1.00	
2	0.09	8.64	9.98	1.16	
3	0.17	8.64	10.42	1.21	
4	0.26	8.64	11.09	1.28	
5	0.34	8.64	11.53	1.34	
6	0.43	8.64	11.97	1.39	
7	0.51	8.64	12.42	1.44	
8	1.02	8.64	15.27	1.77	
9	1.53	8.64	17.44	2.02	
10	2.04	8.64	19.14	2.22	
11	2.55	8.64	20.17	2.33	
12	3.06	8.64	20.53	2.38	
13	3.41	8.64	20.92	2.42	
14	4.26	8.64	21.65	2.51	
15	5.11	8.64	22.16	2.57	
16	5.96	8.64	22.25	2.58	
17	6.81	8.64	22.74	2.63	
18	7.66	8.64	23.02	2.66	
19	8.51	8.64	23.29	2.70	
20	9.36	8.64	23.35	2.70	
21	10.22	8.64	23.81	2.76	
22	11.07	8.64	24.05	2.78	
23	11.92	8.64	24.29	2.81	
24	12.77	8.64	24.34	2.82	
25	13.62	8.64	24.75	2.87	
26	14.47	8.64	24.97	2.89	
27	15.32	8.64	25.18	2.92	
28	16.17	8.64	25.38	2.94	
29	17.03	8.64	25.58	2.96	
30	17.88	8.64	25.77	2.98	
31	18.73	8.64	25.95	3.00	
32	19.58	8.64	25.94	3.00	

CONSULTING ENGINEERS


TRIAXIAL COMPRESSION TEST

Page 2 of 3

Project Name : Solar Farm Information & Welcome Center Site DesignProject No. : 38001-1684-0438001-1684-04Point No. : 1Project County : HaywoodSample Loc. : Boring No_56Project State : TennesseeSample Depth : 19.5' to 20.4'Laboratory No. : 10217Date Tested : 11-04-10Submitted By : Florence & HutchesonDate Reported : 11-24-10

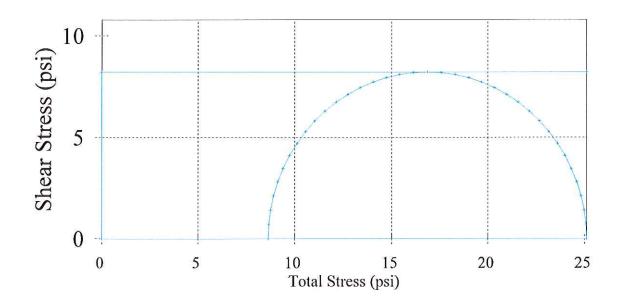
Final Moisture : 31.1 % Final Height : 12.00 cm Final Diameter : 8.00 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 8.64 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 % Init.Void Ratio : 0.8197 Final Void Ratio : 0.8197 Specific Gravity : 2.766 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3

•


Project Name	: Solar Farm Information & Welcome Cer	nter Site Design
Project No.	: 38001-1684-0438001-1684-04	
Project County	: Haywood	Sample Loc. : Boring No_56
Project State	: Tennessee	Sample Depth: 19.5' to 20.4'
Laboratory No.	: 10217	Date Tested : 11-04-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-24-10
COEFFICIENT OF INTE	RNAL FRICTION AND COHESION BY	THE METHOD OF LEAST SQUARES
		an na seanan an an an ann ann ann an Santaire. Tartaisean an ann an an an an an ann an ann an a

Test	Lateral	Total	Compressive Strength = 2371	psf
1	8.64	25.10	Cohesion = 1185	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: <u>*b*</u>*ζ*_____

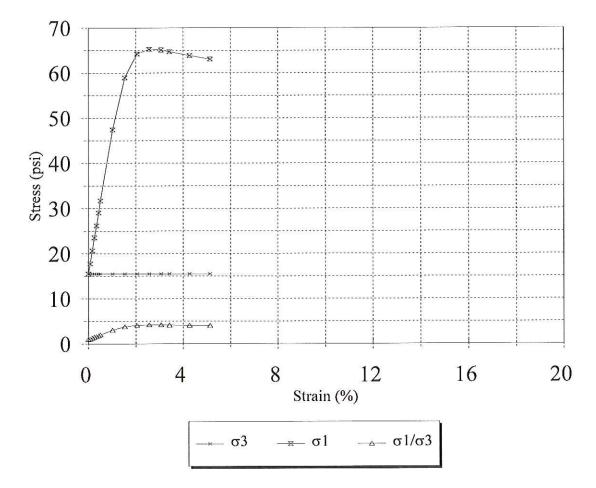
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

					Page 1 of 3	
Project Name : Solar Farm Information & Welcome Center Site Design						
Project No. : 38001-1684-0438001-1684-04				Point N	No. : 1	
Project County : Hayy	vood			Sample L	oc. : Boring No_56	
Project State : Tenn	lessee			Sample Dep	oth : 34.5' to 36.1'	
Laboratory No. : 1021	7			Date Test	ted : 11-04-10	
Submitted By : Flore	ence & Hutc	heson		Date Report	ted : 11-24-10	
Soil Type : Light Gray S						
Wet Density : 127.4 pcf		Delta Height	:NA	Init	ial Height : 14.84 cm	
Dry Density : 108.2 pcf		Delta Volume	:NA	Initial	Diameter : 7.17 cm	
Moisture : 17.8 %	CI	namber Pressure.	: 15.5 psi	Init.	Pore Pres. : NA	
RESULTS:						
	Е а	σ 3 (psi)	σ1 (psi)	σ1 / σ3		
Ĩ	0.00	15.51	15.51	1.00		
2	0.09	15.51	17.75	1.14		
3	0.17	15.51	20.65	1.33		
4	0.26	15.51	23.54	1.52		
5	0.34	15.51	26.21	1.69		
6	0.43	15.51	29.06	1.87		
7	0.51	15.51	31.68	2.04		
8	1.03	15.51	47.44	3.06		
9	1.54	15.51	58.98	3.80		
10	2.05	15.51	64.23	4.14		
11	2.57	15.51	65.28	4.21		
12	3.08	15.51	65.11	4.20		
13	3.42	15.51	64.75	4.17		
14	4.28	15.51	63.86	4.12		
15	5.13	15.51	63.06	4.07		

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST


Page 2 of 3

Project Name: Solar Farm Information & Welcome Center Site Design
Project No. : 38001-1684-0438001-1684-04Project No. : 38001-1684-0438001-1684-04PointProject County: HaywoodSample LProject State: TennesseeSample DeLaboratory No. : 10217Date TesSubmitted By: Florence & HutchesonDate Report

Point No. : 1 Sample Loc. : Boring No_56 Sample Depth : 34.5' to 36.1' Date Tested : 11-04-10 Date Reported : 11-24-10

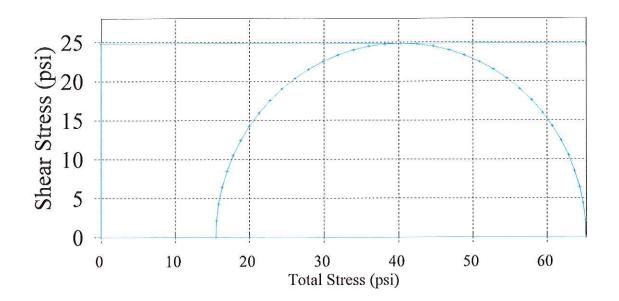
Final Moisture : 17.8 % Final Height : 14.08 cm Final Diameter : 7.36 cm Initial Saturation : 88 % RESULTS: Eff. Cons. Stress : 15.51 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 88 % Init.Void Ratio : 0.5421 Final Void Ratio : 0.5421 Specific Gravity : 2.672 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3

:


Project Name	: Solar Farm Information & Welcome Cen	iter Site Design
Project No.	: 38001-1684-0438001-1684-04	
Project County	: Haywood	Sample Loc. : Boring No_56
Project State	: Tennessee	Sample Depth : 34.5' to 36.1'
Laboratory No.	: 10217	Date Tested : 11-04-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-24-10
COEFFICIENT OF INTE	RNAL FRICTION AND COHESION BY	THE METHOD OF LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 7167	psf
1	15.51	65.28	Cohesion = 3583	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: DLC

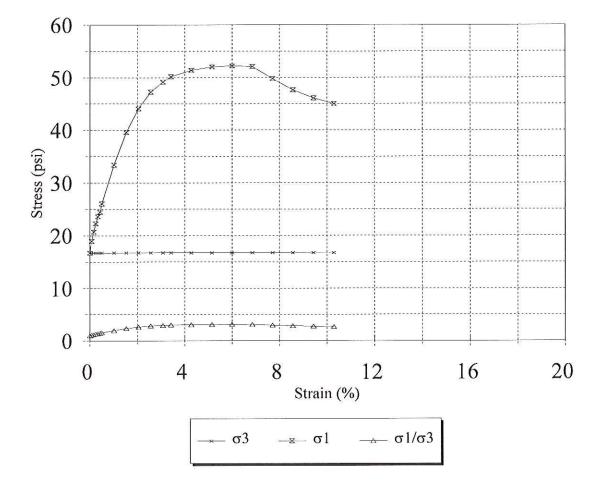
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

					Pa	age 1 of 3
	Project Name : Solar	Farm Infor	mation & Welco	me Center Site D	esign	
Project No. : 38001-1684-0438001-1684-04				Point No. : 1		
	Project County : Hayv	vood			Sample Loc. : Borir	ng No_57
	Project State : Tenn	essee			Sample Depth : 24.9'	to 26.5'
	Laboratory No. : 1021	7			Date Tested : 11-04	1-10
	Submitted By : Flore	nce & Hutc	heson		Date Reported : 11-24	4-10
	Soil Type : Light Gray S	Silty, Clayey	/ Sand			
	Wet Density: 130.9 pcf		Delta Height	:NA	Initial Height	: 14.81 cm
	Dry Density : 107.3 pcf		Delta Volume		Initial Diameter	: 7.18 cm
	Moisture : 22.1 %	Cl	namber Pressure.	: 16.7 psi	Init. Pore Pres.	: NA
	RESULTS:					
		8 а	σ 3 (psi)	σ1 (psi)	σ1 / σ3	
	1	0.00	16.71	16.71	1.00	
	2	0.09	16.71	18.94	1.13	
	3	0.17	16.71	20.72	1.24	
	4	0.26	16.71	22.28	1.33	
	5	0.34	16.71	23.61	1.41	
	6	0.43	16.71	24.49	1.47	
	7	0.51	16.71	26.04	1.56	
	8	1.03	16.71	33.43	2.00	
	9	1.54	16.71	39.59	2.37	
	10	2.06	16.71	44.08	2.64	
	11	2.57	16.71	47.27	2.83	
	12	3.09	16.71	49.13	2.94	
	13	3.43	16.71	50.16	3.00	
	14	4.29	16.71	51.38	3.08	
	15	5.15	16.71	52.01	3.11	
	16	6.00	16.71	52.25	3.13	
	17	6.86	16.71	52.11	3.12	
	18	7.72	16.71	49.77	2.98	
	19	8.58	16.71	47.66	2.85	
	20	9.44	16.71	46.08	2.76	
	21	10.29	16.71	45.04	2.70	

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST


Page 2 of 3

Project Name: Solar Farm Information & Welcome Center Site Design
Project No. : 38001-1684-0438001-1684-04Project County: HaywoodProject State: TennesseeLaboratory No. : 10217Date TesSubmitted By: Florence & HutchesonDate Report

Point No. : 1 Sample Loc. : Boring No_57 Sample Depth : 24.9' to 26.5' Date Tested : 11-04-10 Date Reported : 11-24-10

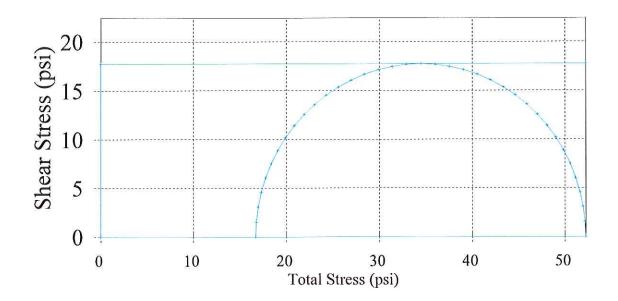
Final Moisture : 22.1 % Final Height : 13.28 cm Final Diameter : 7.58 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 16.71 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 % Init.Void Ratio : 0.5407 Final Void Ratio : 0.5407 Specific Gravity : 2.647 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3

:


Project Name	: Solar Farm Information & Welcome C	Center Site Design
Project No.	: 38001-1684-0438001-1684-04	
Project County	: Haywood	Sample Loc. : Boring No_57
Project State	: Tennessee	Sample Depth : 24.9' to 26.5'
Laboratory No.	: 10217	Date Tested : 11-04-10
Submitted By	: Florence & Hutcheson	Date Reported : 11-24-10
COEFFICIENT OF INTE	RNAL FRICTION AND COHESION B	Y THE METHOD OF LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 5118	psf
1	16.71	52.25	Cohesion = 2559	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: DLC

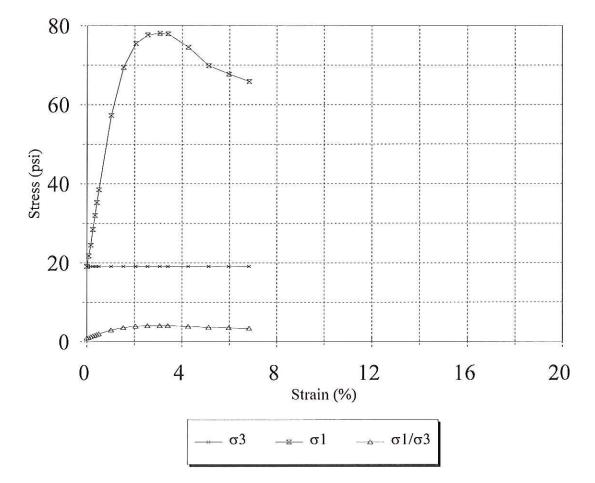
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

					rage 1 01 5	
Project Name : Solar Farm Information & Welcome Center Site Design						
Project No. : 38001-1684-0438001-1684-04				Point N	o. :1	
Project County : Haywood				Sample Lo	c. : Boring No_59	
Project State : Tenn	essee			Sample Dep	th : 29.1' to 30.8'	
Laboratory No. : 1021	7			Date Teste	ed : 11-14-10	
Submitted By : Flore	nce & Huto	cheson		Date Reporte	ed : 11-24-10	
Soil Type : Light Gray S	Sandy Lean	Clay				
Wet Density : 132.8 pcf		Delta Height	: NA	Initi	al Height : 14.86 cm	
Dry Density : 110.4 pcf		Delta Volume	: NA	Initial	Diameter : 7.17 cm	
Moisture : 20.3 %	C	hamber Pressure.	: 19.1 psi	Init. F	Pore Pres. : NA	
RESULTS:						
	εа	σ 3 (psi)	σ1 (psi)	σ1/σ3		
1	0.00	19.10	19.10	1.00		
2	0.09	19.10	21.78	1.14		
3	0.17	19.10	24.45	1.28		
4	0.26	19.10	28.46	1.49		
5	0.34	19.10	31.99	1.67		
6	0.43	19.10	35.27	1.85		
7	0.51	19.10	38.54	2.02		
8	1.03	19.10	57.32	3.00		
9	1.54	19.10	69.55	3.64		
10	2.05	19.10	75.49	3.95		
11	2.56	19.10	77.66	4.07		
12	3.08	19.10	78.17	4.09		
13	3.42	19.10	77.96	4.08		
14	4.27	19.10	74.62	3.91		
15	5.13	19.10	69.92	3.66		
16	5.98	19.10	67.81	3.55		
17	6.84	19.10	65.94	3.45		

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST


Page 2 of 3

Project Name: Solar Farm Information & Welcome Center Site Design
Project No.: 38001-1684-0438001-1684-04PointProject County: HaywoodSample LProject State: TennesseeSample DeLaboratory No.: 10217Date TesSubmitted By: Florence & HutchesonDate Report

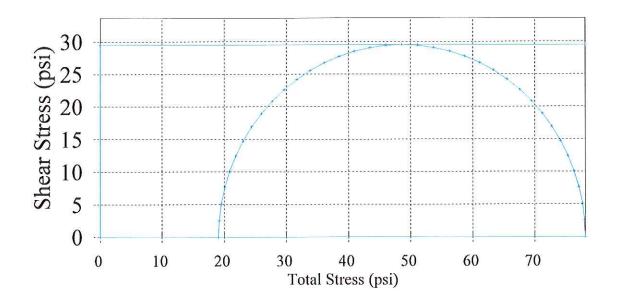
Point No. : 1 Sample Loc. : Boring No_59 Sample Depth : 29.1' to 30.8' Date Tested : 11-14-10 Date Reported : 11-24-10

Final Moisture : 20.3 % Final Height : 13.84 cm Final Diameter : 7.43 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 19.10 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 % Init.Void Ratio : 0.5130 Final Void Ratio : 0.5130 Specific Gravity : 2.675 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3


Project No. : 38001-1684-0438001-1684-04
Project County : Haywood Sample Loc. : Boring No_59
Project State : Tennessee Sample Depth : 29.1' to 30.8'
Laboratory No. : 10217 Date Tested : 11-14-10
Submitted By : Florence & Hutcheson Date Reported : 11-24-10
COEFFICIENT OF INTERNAL FRICTION AND COHESION BY THE METHOD OF LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 8506	psf
1	19.10	78.17	Cohesion = 4253	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: Dec

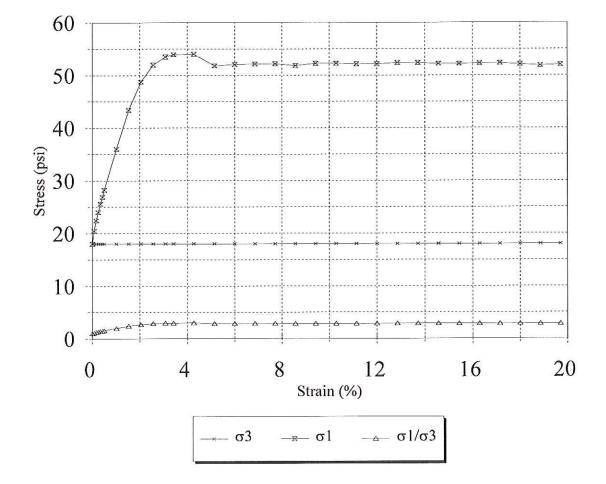
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

				Page 1 of 3	
Project Name : Solar Farm Information & Welcome Center Site Design					
Project No. : 38001-1684-0438001-1684-04				Point No. : 1	
Project County : Hay	ywood			Sample Loc. : Boring No 60	
Project State : Ter	 Comparison of the case 			Sample Depth : 29.0' to 30.6'	
Laboratory No. : 102				Date Tested : 11-14-10	
Submitted By : Flo		reson		Date Reported : 11-24-10	
Soil Type : Light Gray					
Wet Density : 127.8 pcf	Lean City in	Delta Height	·NA	Initial Height : 14.81 cm	
Dry Density : 127.8 pcf		Delta Volume		Initial Diameter : 7.17 cm	
Moisture : 23.3 %	Ch	amber Pressure.		Init. Pore Pres. : NA	
	Ch	amber riessure.	. 10.0 psi	mit. Fore files IVA	
RESULTS:	and such	a (-1./2	
	εа	σ 3 (psi)	σ1 (psi)	σ1/σ3	
1	0.00	18.00	18.00	1.00	
2	0.09	18.00	20.46	1.14	
3	0.17	18.00	22.46	1.25	
4	0.26	18.00	24.02	1.33	
5	0.34	18.00	25.57	1.42	
6	0.43	18.00	26.90	1.49	
7	0.51	18.00	28.23	1.57	
8	1.03	18.00	36.03	2.00	
9	1.54	18.00	43.42	2.41	
10	2.06	18.00	48.74	2.71	
11	2.57	18.00	51.96	2.89	
12	3.09	18.00	53.51	2.97	
13	3.43	18.00	53.96	3.00	
14	4.29	18.00	54.02	3.00	
15	5.15	18.00	51.82	2.88	
16	6.00	18.00	52.07	2.89	
17	6.86	18.00	52.13	2.90	
18	7.72	18.00	52.18	2.90	
19	8.58	18.00	51.86	2.88	
20	9.43	18.00	52.26	2.90	
20	10.29	18.00	52.29	2.90	
22	11.15	18.00	52.14	2.90	
22	12.01	18.00	52.14	2.90	
23	12.86	18.00	52.34	2.91	
24	13.72	18.00	52.34	2.91	
				2.90	
26	14.58	18.00	52.17		
27	15.44	18.00	52.16	2.90	
28	16.29	18.00	52.31	2.91	
29	17.15	18.00	52.29	2.90	
30	18.01	18.00	52.10	2.89	
31	18.87	18.00	51.90	2.88	
32	19.72	18.00	52.02	2.89	

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST


Page 2 of 3

Project Name : Solar Farm Information & Welcome Center Site DesignProject No. : 38001-1684-0438001-1684-04Point No. : 1Project County : HaywoodSample Loc. : Boring No_60Project State : TennesseeSample Depth : 29.0' to 30.6'Laboratory No. : 10217Date Tested : 11-14-10Submitted By : Florence & HutchesonDate Reported : 11-24-10

Final Moisture : 23.3 % Final Height : 11.89 cm Final Diameter : 8.01 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 18.00 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 % Init.Void Ratio : 0.5982 Final Void Ratio : 0.5982 Specific Gravity : 2.655

Comments : AASHTO T-296

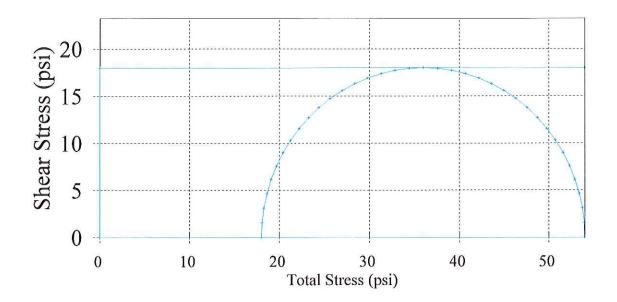
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3

:

1


Project Name	: Solar Farm Information & Welcome Cen	iter Site Design	
Project No.	: 38001-1684-0438001-1684-04		
Project County	: Haywood	Sample Loc.	: Boring No_60
Project State	: Tennessee	Sample Depth	: 29.0' to 30.6'
Laboratory No.	: 10217	Date Tested	: 11-14-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-24-10
COEFFICIENT OF INTE	RNAL FRICTION AND COHESION BY	THE METHOD OF	LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 5186	psf
1	18.00	54.02	Cohesion = 2593	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000)

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: DLC

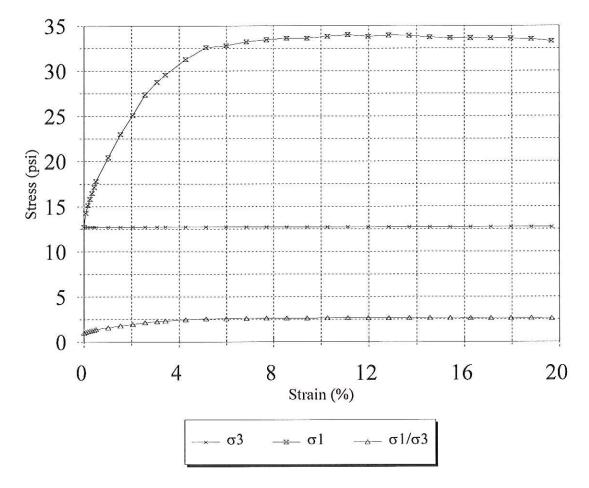
CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

					Page 1 of 3
Project Name : Sola	ar Farm Infori	nation & Welco	me Center Site D	esign	
Project No. : 380	01-1684-043	8001-1684-04		Point No.	:1
Project County : Hay	wood			Sample Loc.	: Boring No 62
Project State : Ten				Sample Depth	: 29.5' to 30.9'
Laboratory No. : 102				Date Tested	
Submitted By : Flor		neson		Date Reported	
Soil Type : Beige & Y			Clay		
Wet Density : 121.5 pcf		Delta Height		Initial I	Height: 14.84 cm
Dry Density : 94.8 pcf		Delta Volume			ameter : 7.20 cm
Moisture : 28.2 %	Ch	amber Pressure.			e Pres. : NA
RESULTS:	Ch	amber i ressare.	. 12.7 psi		
RECORTS.	6.0	σ 3 (psi)	σl (psi)	σ1 / σ3	
1	E a	12.72	12.72	1.00	
1	0.00			1.12	
2	0.09	12.72	14.27		
3	0.17	12.72	15.16	1.19	
4	0.26	12.72	15.82	1.24	
5	0.34	12.72	16.48	1.30	
6	0.43	12.72	17.14	1.35	
7	0.51	12.72	17.80	1.40	
8	1.03	12.72	20.41	1.60	
9	1.54	12.72	22.99	1.81	
10	2.05	12.72	25.09	1.97	
11	2.57	12.72	27.37	2.15	
12	3.08	12.72	28.78	2.26	
13	3.42	12.72	29.57	2.32	
14	4.28	12.72	31.30	2.46	
15	5.13	12.72	32.59	2.56	
16	5.99	12.72	32.82	2.58	
17	6.85	12.72	33.25	2.61	
18	7.70	12.72	33.45	2.63	
19	8.56	12.72	33.65	2.64	
20	9.41	12.72	33.65	2.64	
21	10.27	12.72	33.83	2.66	
22	11.12	12.72	34.01	2.67	
23	11.98	12.72	33.80	2.66	
24	12.84	12.72	33.97	2.67	
25	13.69	12.72	33.94	2.67	
26	14.55	12.72	33.73	2.65	
27	15.40	12.72	33.70	2.65	
28	16.26	12.72	33.67	2.65	
29	17.11	12.72	33.63	2.64	
30	17.97	12.72	33.59	2.64	
31	18.82	12.72	33.54	2.64	
32	19.68	12.72	33.32	2.62	

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST


Page 2 of 3

Project Name: Solar Farm Information & Welcome Center Site Design
Project No.Point No.: 1Project No.: 38001-1684-0438001-1684-04Point No.: 1Project County: HaywoodSample Loc.: Boring No_62Project State: TennesseeSample Depth: 29.5' to 30.9'Laboratory No.: 10217Date Tested: 10-31-10Submitted By: Florence & HutchesonDate Reported: 11-24-10

Final Moisture : 28.2 % Final Height : 11.92 cm Final Diameter : 8.03 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 12.72 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 % Init.Void Ratio : 0.7477 Final Void Ratio : 0.7477 Specific Gravity : 2.653

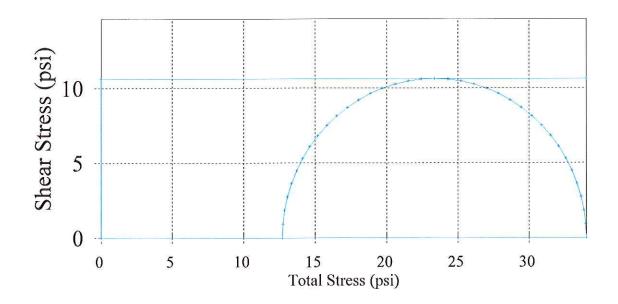
Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3

:


Project Name : Solar Farm	Information & Welcome Center Site Design
Project No. : 38001-1684	-0438001-1684-04
Project County : Haywood	Sample Loc. : Boring No_62
Project State : Tennessee	Sample Depth : 29.5' to 30.9'
Laboratory No. : 10217	Date Tested : 10-31-10
Submitted By : Florence &	Hutcheson Date Reported : 11-24-10
COEFFICIENT OF INTERNAL FRICT	ION AND COHESION BY THE METHOD OF LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 3065	psf
1	12.72	34.01	Cohesion = 1532	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: <u>QLC</u>

CONSULTING ENGINEERS

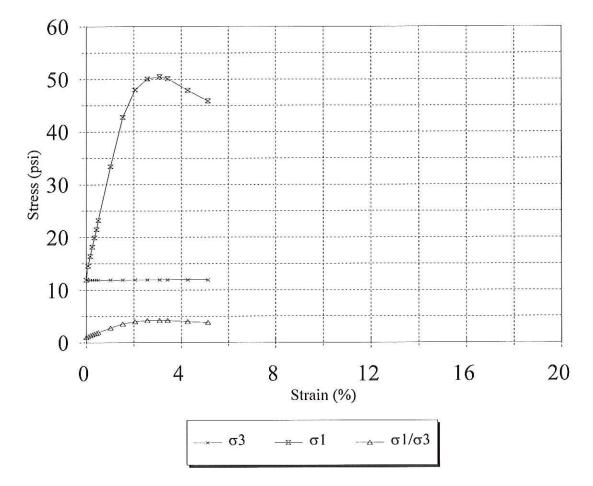
TRIAXIAL COMPRESSION TEST

					Page 1 of 3
Project Name : Sola	r Farm Infor	mation & Welco	me Center Site D	esign	
Project No. : 3800	1-1684-043	8001-1684-04		Point N	lo. : 1
Project County : Hayy	wood			Sample Lo	oc. : Boring No_63
Project State : Tenn	nessee			Sample Dep	oth : 25.0' to 26.3'
Laboratory No. : 1021	7			Date Test	ed : 11-04-10
Submitted By : Flore	ence & Hutc	heson		Date Report	ed : 11-24-10
Soil Type : Light Gray	& Yellowish	Orange Lean C	lay with Sand		
Wet Density : 128.4 pcf		Delta Height	:NA	Initi	ial Height : 14.83 cm
Dry Density : 104.0 pcf		Delta Volume	: NA	Initial	Diameter : 7.18 cm
Moisture : 23.4 %	Ch	amber Pressure.	: 11.9 psi	Init. I	Pore Pres. : NA
RESULTS:					
	εа	σ 3 (psi)	σl (psi)	σ1/σ3	
1	0.00	11.93	11.93	1.00	
2	0.09	11.93	14.60	1.22	
3	0.17	11.93	16.38	1.37	
4	0.26	11.93	18.16	1.52	
5	0.34	11.93	19.93	1.67	
6	0.43	11.93	21.48	1.80	
7	0.51	11.93	23.25	1.95	
8	1.03	11.93	33.43	2.80	
9	1.54	11.93	42.80	3.59	
10	2.06	11.93	47.97	4.02	
11	2.57	11.93	50.10	4.20	
12	3.08	11.93	50.47	4.23	
13	3.43	11.93	50.14	4.20	
14	4.28	11.93	47.91	4.02	
15	5.14	11.93	45.90	3.85	

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 2 of 3


Project Name: Solar Farm Information & Welcome Center Site Design
Project No.Point No.: 1Project No.: 38001-1684-0438001-1684-04Point No.: 1Project County: HaywoodSample Loc.: Boring No_63Project State: TennesseeSample Depth: 25.0' to 26.3'Laboratory No.: 10217Date Tested: 11-04-10Submitted By: Florence & HutchesonDate Reported: 11-24-10

Final Moisture : 23.4 % Final Height : 14.07 cm Final Diameter : 7.37 cm Initial Saturation : 100 % RESULTS: Eff. Cons. Stress : 11.93 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 100 %

Date Reported : 11-24-10 93 psi Init.Void Ratio : 0.5930 Final Void Ratio : 0.5930

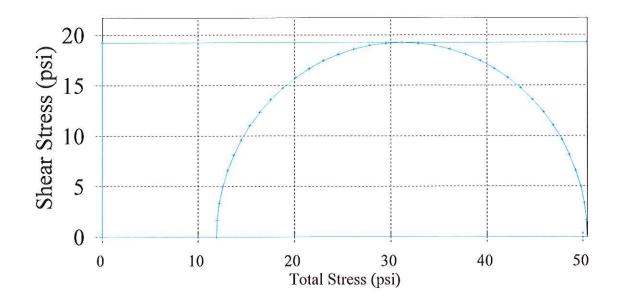
Specific Gravity : 2.654 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 3 of 3

•


Project Name	: Solar Farm Information & Welco	ome Center Site Design	
Project No.	: 38001-1684-0438001-1684-04		
Project County	: Haywood	Sample Loc. : Boring No_63	
Project State	Tennessee	Sample Depth : 25.0' to 26.3'	
Laboratory No.	: 10217	Date Tested : 11-04-10	
Submitted By	: Florence & Hutcheson	Date Reported : 11-24-10	
COEFFICIENT OF INTER	RNAL FRICTION AND COHESI	ON BY THE METHOD OF LEAST SQUARES	

Test	Lateral	Total	Compressive Strength = 5550	psf
1	11.93	50.47	Cohesion = 2775	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

At Maximum Deviator Stress

Triaxial Mohr's Circles

Unconsolidated Undrained Triaxial Test

APPROVED BY: DLC

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

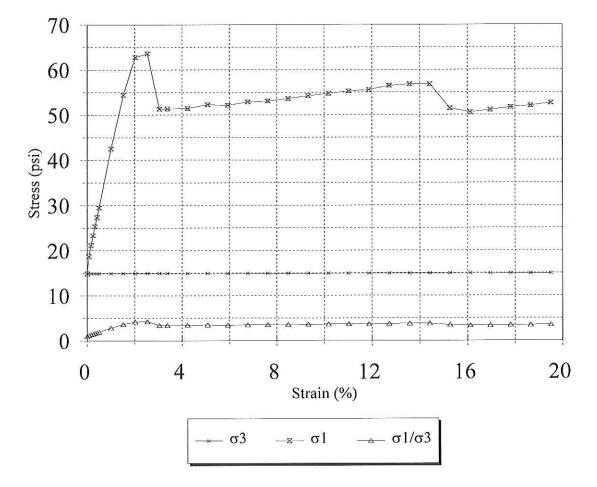
Project Name : Sola	r Farm Inform	nation & Welco	me Center Site D	esign	
Project No. : 3800				Point No. : 1	
Project County : Hay				Sample Loc. : Boring N	No 65
Project State : Tenr				Sample Depth : 34.7' to 2	
Laboratory No. : 1021				Date Tested : 101-31-	
Submitted By : Flore		econ		Date Reported : 11-24-10	
construction of the second of	1000 CON 1000 CON	163011		Date Reported 11-24 It	,
Soil Type : Dark Gray S	Silly Sallu	Delta Height	·NA	Initial Height : 1	4 97 cm
Wet Density : 123.3 pcf		Delta Volume		Initial Diameter : 7	
Dry Density : 99.4 pcf	Ch	amber Pressure.		Init. Pore Pres. : N	
Moisture : 24.0 %	CII	amoer riessure.	. 14.9 psi	mit. Pore Pres 19	(A
RESULTS:					
	Еа	σ 3 (psi)	σ1 (psi)	σ1 / σ3	
1	0.00	14.91	14.91	1.00	
2	0.08	14.91	18.70	1.25	
3	0.17	14.91	21.15	1.42	
4	0.25	14.91	23.37	1.57	
5	0.34	14.91	25.37	1.70	
6	0.42	14.91	27.34	1.83	
7	0.51	14.91	29.52	1.98	
8	1.02	14.91	42.55	2.85	
9	1.53	14.91	54.45	3.65	
10	2.04	14.91	62.79	4.21	
11	2.55	14.91	63.56	4.26	
12	3.05	14.91	51.34	3.44	
13	3.39	14.91	51.41	3.45	
14	4.24	14.91	51.47	3.45	
15	5.09	14.91	52.27	3.50	
16	5.94	14.91	52.12	3.49	
17	6.79	14.91	52.89	3.55	
18	7.64	14.91	53.09	3.56	
19	8.48	14.91	53.65	3.60	
20	9.33	14.91	54.25	3.64	
21	10.18	14.91	54.79	3.67	
22	11.03	14.91	55.30	3.71	
23	11.88	14.91	55.61	3.73	
24	12.73	14.91	56.48	3.79	
25	13.57	14.91	56.82	3.81	
26	14.42	14.91	56.82	3.81	
20	15.27	14.91	51.49	3.45	
27	16.12	14.91	50.58	3.39	
28		14.91	51.12	3.43	
30	16.97 17.82	14.91	51.67	3.46	
		14.91	52.02	3.49	
31	18.66			3.53	
32	19.51	14.91	52.62	5.55	

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

Page 2 of 3

Project Name : Solar Farm Information & Welcome Center Site Design Project No. : 38001-1684-0438001-1684-04 Point No. :1 Sample Loc. : Boring No_65 Project County : Haywood Project State : Tennessee Laboratory No. : 10217 Submitted By : Florence & Hutcheson


Final Moisture : 24.0 % Final Height : 12.05 cm Final Diameter : 8.00 cm Initial Saturation : 97 % **RESULTS:**

Eff. Cons. Stress : 14.91 psi Total Back Pressure : NA Pore Pres. After Sat. : NA Final Saturation : 97 %

Sample Depth : 34.7' to 35.6' Date Tested : 101-31-10 Date Reported : 11-24-10

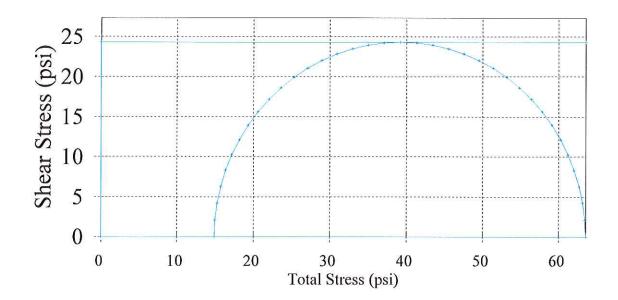
Init.Void Ratio : 0.6561 Final Void Ratio : 0.6561 Specific Gravity : 2.638 Comments : AASHTO T-296

CONSULTING ENGINEERS

TRIAXIAL COMPRESSION TEST

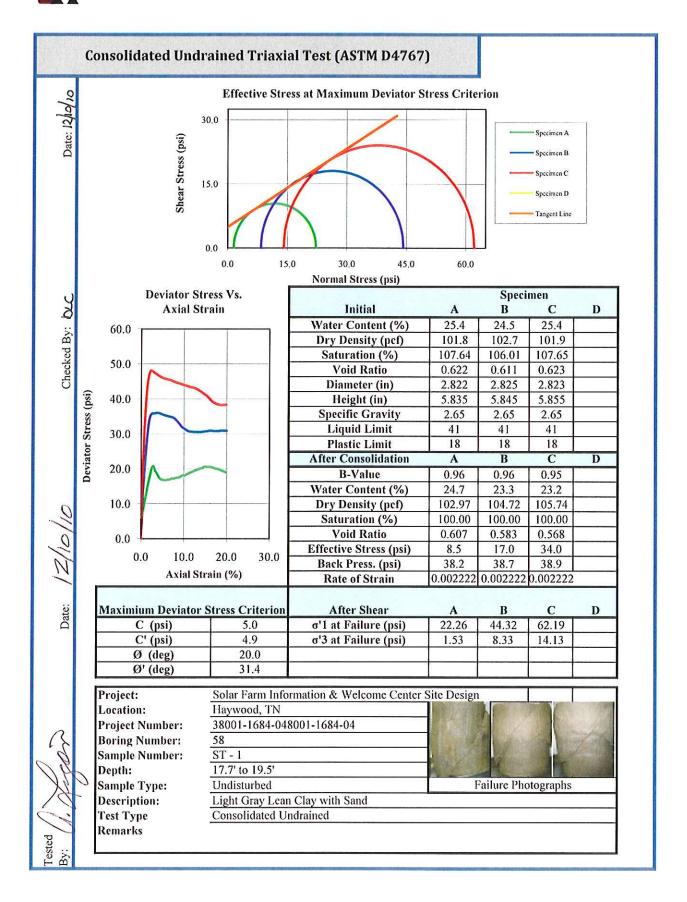
Page 3 of 3

:

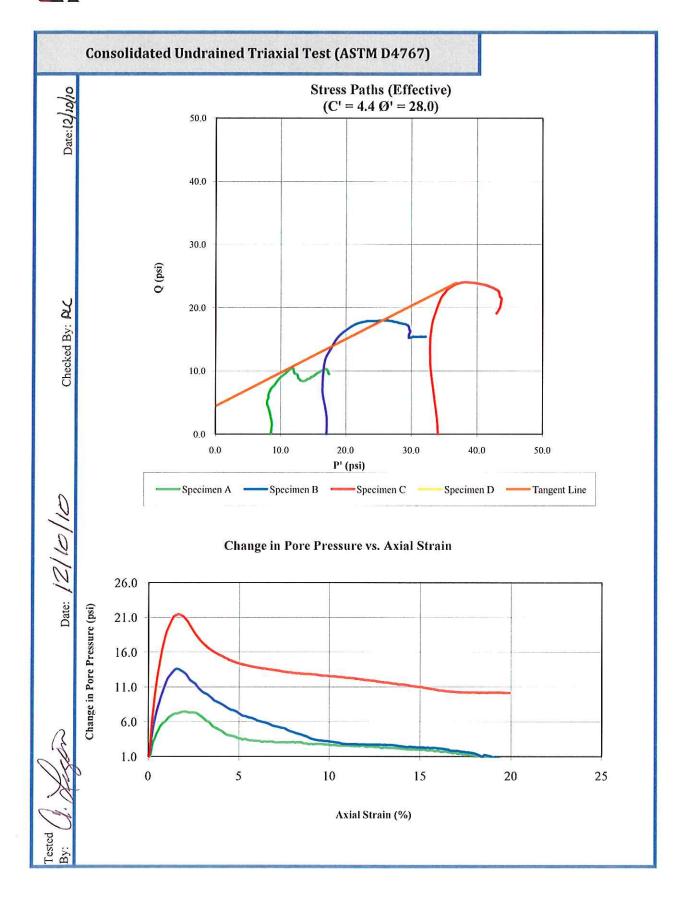

Project Name	: Solar Farm Information & Welcome Cer	nter Site Design	
Project No.	: 38001-1684-0438001-1684-04		
Project County	: Haywood	Sample Loc.	: Boring No_65
Project State	: Tennessee	Sample Depth	: 34.7' to 35.6'
Laboratory No.		Date Tested	: 101-31-10
Submitted By	: Florence & Hutcheson	Date Reported	: 11-24-10
COEFFICIENT OF INTE	RNAL FRICTION AND COHESION BY	THE METHOD OF	LEAST SQUARES

Test	Lateral	Total	Compressive Strength = 7006	psf
1	14.91	63.56	Cohesion = 3503	psf
			Phi = 0.0	deg
			Tan (Phi) = 0.0000	

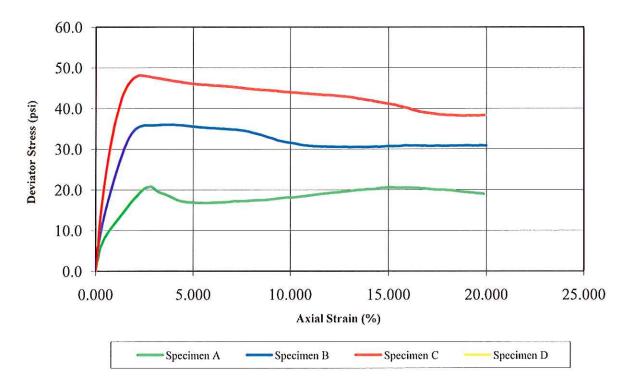
At Maximum Deviator Stress

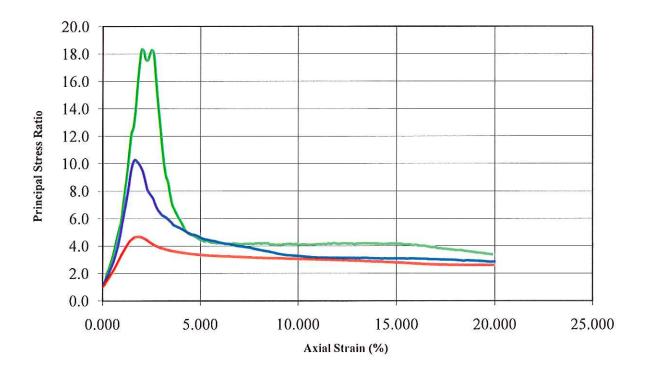

Triaxial Mohr's Circles

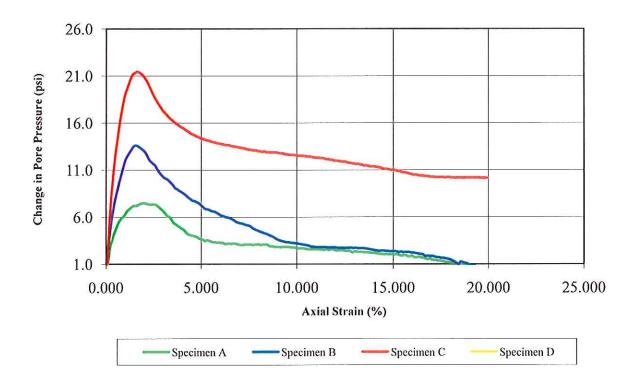
Unconsolidated Undrained Triaxial Test



APPROVED BY: <u>الدر</u>

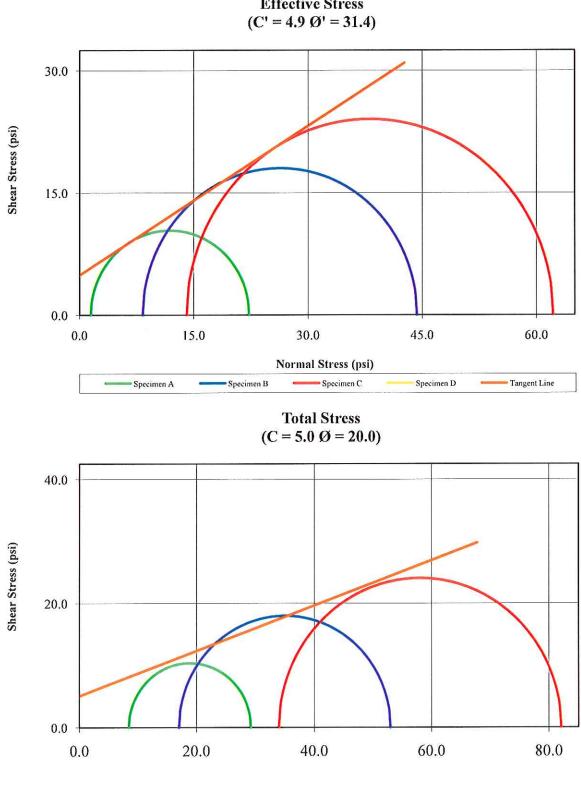

Florence & Hutcheson Consulting Engineers



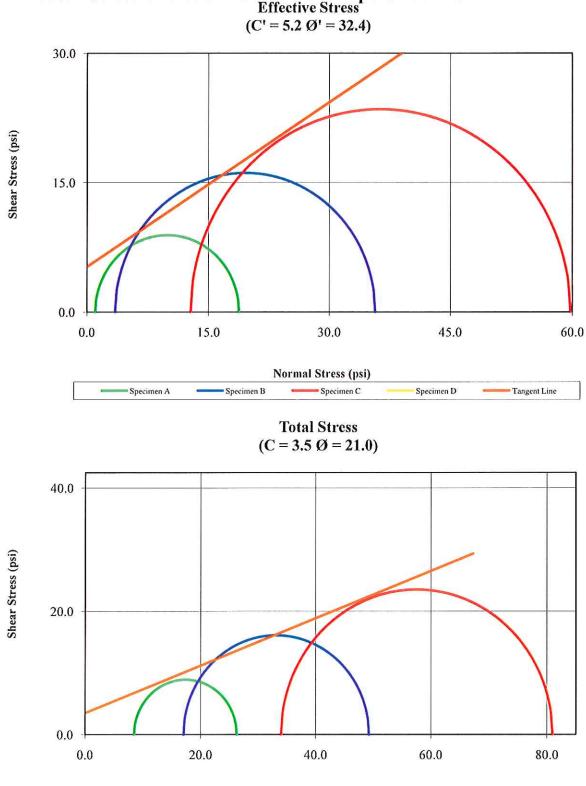


Deviator Stress vs. Axial Strain

Principal Stress Ratio vs. Axial Strain

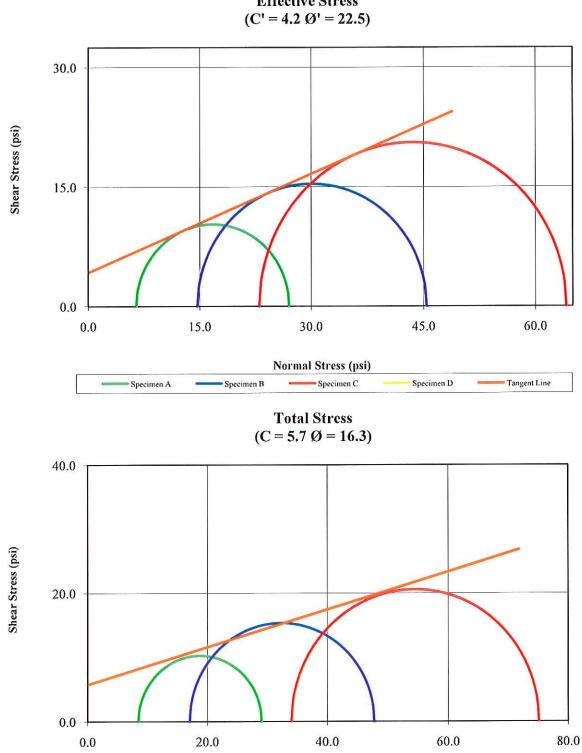


Change in Pore Pressure vs. Axial Strain



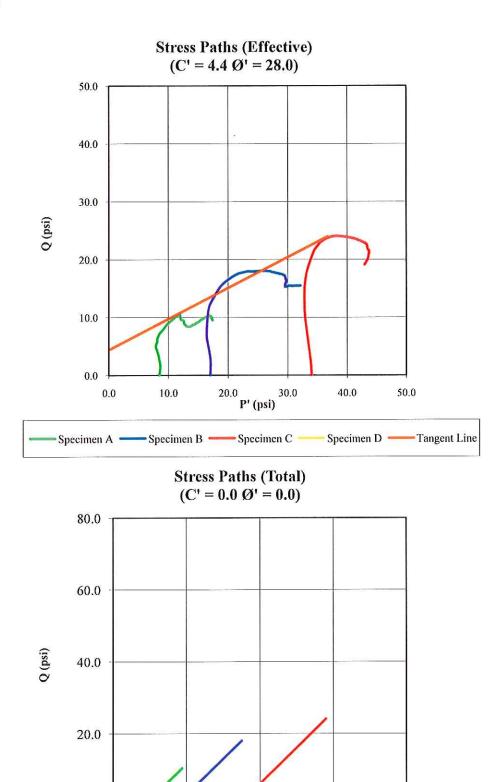
Mohr Stress Circles at Maximum Deviator Stress Criterion **Effective Stress**

Normal Stress (psi)



Mohr Stress Circles at Maximum Principal Stress Ratio Criterion Effective Stress

Normal Stress (psi)


Mohr Stress Circles at 15% Axial Strain Criterion Effective Stress (C' = 4.2 Ø' = 22.5)

Normal Stress (psi)

0.0

0.0

20.0

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • (270) 444-9691 • fax (270) 443-3943 email: fhcorporate@flohut.com Boring No_58_17.HSD

60.0

80.0

40.0

P (psi)

Florence & Hutcheson CONSULTING ENGINEERS 112

Specimen A Shear Data

CU Triaxial Test

Project Information File Location Boring No_58_17.HSD

Sample Data

Sample Type: Undisturbed Project Name: Solar Farm Information & Welcome Center Site Design Sample Description: Light Gray Lean Clay with Sand Project No. 38001-1684-048001-1684-04 Sample Location: Haywood, TN Client:

Specific Gravity: 2.6500001

41.000 18.000 PL: PL:

Sample Parameters	Initial	After Consolidation	Final
Diameter (in)	2.822	2.818	
Height (in)	5.835	5.788	
Weight (grams)	1223.20	_	1232.30
Moisture (%)	25.39		26.32
Dry Density (pcf)	101.80	102.97	
Saturation (%)	107.64	100.00	
Void Ratio	0.622	0.607	

Test Data

Remarks:

Rate of Strain: 0.002222 Cell Pressure (psi): 46.700

Effective Confining Stress (psi):

20.723 8.5 Corrected Peak Deviator Stress (psi):

27 at reading number:

		A O	(psi) (psi)	0.0 8.5	1.6 8.7	2.8 8.5	3.4 8.4	3.9 8.2	4.3 8.1	4.7 7.9	5.1 7.9	5.4 8.0	5.8 8.2	6.1 8.1	6.4 8.2	6.7 8.3	7.0 8.5	7.4 8.7	7.7 9.0	8.0 9.2	8.3 9.5	8.6 9.7	8.9 9.9	9.2 10.2	01 106
		Abar P	(psi)	0.00 8.5	0.45 10.1	0.51 11.3	0.52 11.9	0.54 12.4	0.55 12.8	0.56 13.2	0.56 13.6	0.55 13.9	0.53 14.3	0.53 14.6	0.52 14.9	0.51 15.2	0.50 15.5	0.49 15.9	0.47 16.2	0.45 16.5	0.44 16.8	0.43 17.1	0.42 17.4	0.41 17.7	020 170
		6'1/6'3 At		1.00 0.	1.44 0.	1.97 0.	2.37 0.	2.83 0.	3.33 0.	3.96 0.	4.59 0.	5.20 0.	5.79 0.	6.96 0.	8.17 0.	9.35 0.	10.86 0.	12.17 0.	12.65 0.	13.85 0.	15.66 0.	17.18 0.	18.29 0.	18.19 0.	17 50 0
		¢'3	(psi)	8.5	7.1	5.7	5.0	4.3	3.7	3.2	2.8	2.6	2.4	2.0	1.8	1.6	1.4	1.3	1.3	1.2	1.1	1.1	1.0	1.1	
		¢'1	(psi)	8.5	10.2	11.2	11.7	12.1	12.4	12.6	13.0	13.4	13.9	14.2	14.6	15.0	15.5	16.0	16.7	17.2	17.8	18.3	18.8	19.4	000
	the second	G3	(psi)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	40
ed	r.	6 ¹	(psi)	8.5	11.6	14.0	15.3	16.3	17.2	17.9	1 18.7	9 19.3	6 20.0	8 20.7	8 21.3	8 21.9	3 22.6	2 23.2	4 23.8	0 24.5	8 25.2	0 25.7	2 26.3	2 26.8	
Corrected	1.2	Stress	(isi)	0.000	3.141	5.529	6.787	7.842	8.699	9.449	10.171	10.839	11.506	12.158	12.808	13.418	14.053	14.712	15.344	16.000	16.668	17.230	17.792	18.312	01001
	Deviator	Stress	(jsd)	0.000	3.192	5.629	6.941	8.049	8.960	9.764	10.543	11.269	11.994	12.707	13.420	14.093	14.792	15.518	16.217	16.943	17.682	18.315	18.948	19.503	00000
	I Axial	Strain	(%)	0.000	0.121	0.225	0.335	0.439	0.543	0.646	0.750	0.854	0.958	1.061	1.165	1.269	1.373	1.476	1.580	1.684	1.787	168.1	1.995	2.099	0000
	Corrected	Area	(in2)	6.24	6.24	6.25	6.26	6.26	6.27	6.28	6.28	6.29	6.30	6.30	6.31	6.32	6.32	6.33	6.34	6.34	6.35	6.36	6.36	6.37	100
Change	in Pore	e Pressure	(isi)	0.0	1.4	2.8	3.5	4.2	4.8	5.3	5.7	5.9	6.1	6.5	6.7	6.9	7.1	7.2	7.2	7.3	7.4	7.4	7.5	7.4	ī
	Pore	Deformation Pressure	(bsi)	38.2	39.6	41.0	41.7	42.4	43.0	43.5	43.9	44.1	44.3	44.7	44.9	45.1	45.3	45.4	45.4	45.5	45.6	45.6	45.7	45.6	1 1.4
	Axial	Deformatic	(in)	0.000	0.007	0.013	0.019	0.025	0.031	0.037	0.043	0.049	0.055	0.061	0.067	0.073	0.079	0.085	0.091	0.097	0.103	0.109	0.115	0.121	10.0
	Reading Deviator	Load	(Ibs)	0.0	19.9	35.1	43.3	50.2	55.9	60.9	65.7	70.3	74.8	79.2	83.7	87.9	92.2	96.8	101.1	105.6	110.2	114.2	118.1	121.6	0.00.
	Readir	No.		0	1	2	с	4	5	9	2	8	6	10	Π	12	13	14	15	16	17	18	19	20	i

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • (270) 444-9691 • fax (270) 443-3943 email: fhcorporate@flohut.com

Boring No_58_17.HSD

Florence & Hutcheson Consulting Engineers

Specimen A

			_		_	_		_						_	_	_	_	_	_			_	_	_	_	_	_					_	_	-	_	_	-	_		_					-	-
	'n	(psi)	10.9	11.1	11.3	11.5	11.7	11.9	12.0	12.0	12.0	12.1	12.1	12.3	12.6	12.6	12.6	12.7	12.7	12.7	12.8	12.9	13.0	13.0	13.0	13.0	13.1	13.2	13.3	13.3	13.4	13.3	13.4	13.5	13.5	13.5	13.6	13.6	13.6	13.7	13.8	13.8	13.8	13.8	13.8	15.8
	0	(isd)	9.7	9.9	10.1	10.3	10.3	10.4	10.3	10.1	9.6	9.7	9.6	9.5	9.4	9.3	9.2	9.1	9.0	8.9	8.7	8.7	8.6	8.5	8.5	8.5	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.5	8.5	c.8
	P	(isi)	18.2	18.4	18.6	18.8	18.8	18.9	18.8	18.6	18.4	18.2	18.1	18.0	17.9	17.8	17.7	17.6	17.5	17.4	17.2	17.2	17.1	17.0	17.0	17.0	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	16.9	17.0	17.0	17.0
	Abar		0.38	0.37	0.36	0.36	0.35	0.34	0.33	0.33	0.32	0.31	0.31	0.30	0.29	0.28	0.28	0.27	0.27	0.26	0.25	0.24	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.20	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
	o'1/6'3		17.53	17.92	18.27	17.97	16.25	14.51	12.98	11.41	10.03	9.09	8.65	7.80	7.05	6.71	6.40	6.12	5.86	5.61	5.30	5.05	4.92	4.84	4.79	4.71	4.64	4.53	4.46	4.41	4.33	4.38	4.33	4.28	4.23	4.23	4.21	4.22	4.20	4.20	4.14	4.15	4.17	4.15	4.18	4.18
	Q'3	(isi)	1.2	1.2	1.2	1.2	1.4	1.5	1.7	1.9	2.2	2.4	2.5	2.8	3.1	3.3	3.4	3.6	3.7	3.8	4.1	4.3	4.4	4.5	4.5	4.6	4.6	4.8	4.9	4.9	5.0	5.0	5.0	5.1	5.2	5.2	5.2	5.2	5.2	5.2	5.4	5.4	5.3	5.4	5.3	5.3
	ď,	(isi)	20.6	21.0	21.4	21.7	22.0	22.3	22.3	22.0	21.9	21.8	21.7	21.8	22.0	21.9	21.8	21.8	21.7	21.6	21.5	21.6	21.6	21.5	21.5	21.5	21.5	21.7	21.7	21.7	21.8	21.7	21.8	21.8	21.9	21.9	22.0	22.0	22.0	22.1	22.2	22.2	22.2	22.3	22.2	22.2
	5	(isd)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
	ď	(bsi)	27.9	28.3	28.8	29.0	29.1	29.2	29.0	28.6	28.2	27.9	27.7	27.5	27.4	27.2	26.9	26.7	26.5	26.2	26.0	25.8	25.7	25.6	25.5	25.4	25.4	25.4	25.3	25.3	25.3	25.2	25.3	25.2	25.2	25.2	25.2	25.3	25.3	25.3	25.3	25.4	25.4	25.4	25.4	25.4
Corrected	Stress	(psi)	19.394	19.849	20.264	20.524	20.643	20.723	20.546	20.101	19.721	19.405	19.192	19.018	18.869	18.657	18.421	18.197	17.974	17.713	17.465	17.307	17.173	17.091	17.021	16.926	16.882	16.875	16.806	16.787	16.767	16.748	16.754	16.722	16.728	16.721	16.739	16.770	16.800	16.818	16.810	16.853	16.858	16.900	16.905	16.922
Deviator 1		(isi)	20.651	21.139	21.587	21.878	22.023	22.128	21.970	21.535	21.165	20.862	20.664	20.505	20.373	20.176	19.951	19.740	19.529	19.278	19.041	18.896	18.777	18.711	18.658	18.579	18.553	18.566	18.513	18.513	18.513	18.513	18.539	18.526	18.553	18.566	18.605	18.658	18.711	18.750	18.764	18.830	18.856	18.922	18.948	18.988
Avial I	Strain	(%)			_	_	-	_	_	-	-	_			-	-	3.758	3.862	3.966	4.070	4.173	4.277	4.381	4.485	4.588	4.692	4.796	4.900	5.003	5.107	5.211	5.315	5.418	5.522	5.626	5.729	5.833	5.937	6.041	6.144	6.248	6.352	6.456	6.559	6.663	6.767
Corrected	9.64	-	\vdash		_	- 3	-	-	_		1	_	_	6.46	_		-	-	-		-			\vdash	-	-		-	-	6.57	-		_	-	-	-	-		6.64	-	-	┝		-	6.68	-
Change in Pore Co			\vdash	7.3	7.3	7.3	7.1	7.0	6.8	6.6	6.3	6.1	6.0	5.7	5.4	5.2	5.1	4.9	4.8	4.7	4.4	4.2	4.1	4.0	4.0	3.9	3.9	3.7	3.6	3.6	3.5	3.5	3.5	3.4	3.3	3.3	3.3	3.3	3.3	3.3	3.1	3.1	3.2	3.1	3.2	3.2
Pore ir	e	-	┝	45.5	45.5	45.5	45.3	45.2	45.0	44.8	44.5	44.3	44.2	43.9	43.6	43.4	43.3	43.1	43.0	42.9	42.6	42.4	42.3	42.2	42.2	42.1	42.1	41.9	41.8	41.8	41.7	41.7	41.7	41.6	41.5	41.5	41.5	41.5	41.5	41.5	41.3	41.3	41.4	41.3	41.4	41.4
Avial	ion		-		0.145				_				-	0.200		_	_	-	-	-	-	\vdash		\vdash	-	-	_	\vdash	.290	0.296	.302	.308	.314	0.320	.326	0.332	.338	.344	.350	.356	.362	.368	0.374	.380	0.386	.392
			L									_	_			_	3) 71		-		-	_	_		_	_							_			-				_		_	L		_	
Daviato	No. Load	(Ibs)	128.8	131.8	134.6	136.4	137.3	138.0	137.0	134.3	132.0	130.1	128.8	127.9	127.0	125.8	124.4	123.1	121.8	120.2	118.7	117.8	117.1	116.7	116.3	115.8	115.7	115.8	115.4	115.4	115.4	115.4	115.6	115.5	115.7	115.8	116.0	116.3	116.7	116.9	117.0	117.4	117.6	118.0	118.1	118.4
Peading	No.		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65

Boring No_58_17.HSD

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • (270) 444-9691 • fax (270) 443-3943 email: fhcorporate@flohut.com

nos	
tchesor	EERS
uto	NGINET
ŚН	NG EN
Se	ONSULTING E
lorence	SONS
Flor	Ŭ
	h
TP	

Specimen A

		-											П	Ι	٦			-1			П	Т	Т	Т	Т	Т	Т	Т		Т	Τ	Т	Т	Т	Τ		T	Т	Т	T	Γ	T.	Γ	П	
	ų	(isi)	13.9	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.1	14.1	14.1	14.1	14.2	14.1	14.1	14.1	14.3	I4.3	14.3	14.4	14.5	14.5	14.6	14.6	14.6	14.6	14.7	14.7	14.8	14.8	14.8	14.9	14.9	14.9	15.0	151	1.51	15.7	15.2	15.2	15.3	15.4	15.4
	0	(bsi)	8.5	8.5	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.8	8.8	8.8	8.8	8.9	8.9	8.9	0.6	9.0	9.0	9.1	0.6	9.0	9.1	9.1	1.7	1.7	2.0	40	93	93	9.3	9.4	9.4
	P	(psi)	17.0	17.0	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.3	17.3	17.3	17.3	17.4	17.4	17.4	17.5	17.5	17.5	17.6	17.5	17.5	1/.0	17.6	17.6	17.7	1.11	177	17.8	17.8	17.8	17.9	17.9
	Abar		0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.17	0.18	0.18	0.18	0.17	0.17	0.17	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.14	0.14	0.14	014	0.14	0 14	0.14	0.13	0.13
	0'1/0'3		4.17	4.14	4.14	4.14	4.16	4.16	4.17	4.17	4.15	4.18	4.18	4.21	4.18	4.20	4.20	4.21	4.15	4.11	4.11	4.08	4.09	4.10	4.09	4.12	4.14	4.14	4.16	4.15	4.14	4.15	4.12	4.10	4.11	4.12	4.11	4.10	4.09	111	4.11	413	4.14	4.14	415
	ď,	(psi)	5.4	5.4	5.5	5.5	5.4	5.4	5.4	5.4	5.5	5.4	5.4	5.4	5.5	5.4	5.4	5.4	5.5	5.6	5.6	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.8	5.8	5.8	5.8	5.8	5.8	Y.C	6.0	2.0	5.0	50	202	5.9	6.0	60
	ď,	(isd)	22.3	22.5	22.6	22.6	22.6	22.6	22.6	22.6	22.7	22.7	22.7	22.7	22.8	22.8	22.8	22.8	23.0	23.0	23.1	23.2	23.3	23.3	23.4	23.4	23.5	23.6	23.6	23.7	23.8	23.9	23.8	23.9	23.9	24.0	24.1	24.2	24.0	24.0	24.4	24.5	24.6	24.7	34.8
	5	(psi)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5 2.5	8.5	0.8	3.0	5.8	8.5	8.5	8.5	28
	ď	(isd)	25.5	25.5	25.7	25.7	25.6	25.6	25.7	25.7	25.7	25.8	25.8	25.8	25.9	25.9	25.9	25.9	25.9	25.9	26.0	26.0	26.1	26.1	26.2	26.3	26.3	26.4	26.4	26.5	26.6	26.6	26.6	26.6	26.6	26.7	20.1	26.8	20.8	20.7	V.07	1.12	272	27.3	5 20
Corrected	Stress	(psi)	16.989	17.042	17.157	17.162	17.142	17.146	17.187	17.191	17.220	17.261	17.289	17.329	17.369	17.385	17.401	17.405	17.432	17.436	17.475	17.503	17.578	17.629	17.680	17.755	17.817	17.868	17.942	17.992	18.054	18.103	18.058	18.060	18.109	18.158	18.207	18.292	18.529	10.477	10.421	10.322	18 652	18.758	10 707
Dominator ((isi)	19.080	19.160	19.305	19.331	19.331	19.357	19.423	19.450	19.503	19.569	19.621	19.687	19.753	19.793	19.832	19.859	19.912	19.938	20.004	20.057	20.162	20.242	20.321	20.426	20.519	20.598	20.703	20.783	20.875	20.954	20.928	20.954	21.033	21.112	21.192	21.310	21.5/6	C64-17	21.540	000.12	21.865	22.010	00000
1.44	Strain	(%)	6.871	6.974		_	L	-	-	7.597	7.700	7.804	7.908	8.012	8.115	8.219	8.323	8.427	8.530	8.634	8.738	8.842	8.945	9.049	9.153	9.257	9.360	9.464	9.568	9.671	9.775	9.879	9.983	10.086	10.190	10.294	10.398	10.501	10.605	10.01	210.01	11 020	11 124	11.228	11 221
	Area		┝	6.70		_	\vdash	┢			\vdash			6.78				-	-		-	-	_		-		_			- 1	-	6.92	-	-	-	-	+	-	+	+	+	1	10.7	-	t
111	Pressure		3.1	3.1	3.0	3.0	3.1	3.1	3.1	3.1	3.0	3.1	3.1	3.1	3.0	3.1	3.1	3.1	3.0	2.9	2.9	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.7	2.7	2.7	2.7	2.7	2.7	2.6	2.6	2.6	0.7	0.7	0.2	2.6	2.5	2 1
-	Pressure Pr	-	41.3	41.3	41.2	41.2	41.3	41.3	41.3	41.3	41.2	41.3	41.3	41.3	41.2	41.3	41.3	41.3	41.2	41.1	41.1	41.0	41.0	41.0	41.0	41.0	41.0	41.0	41.0	41.0	40.9	40.9	40.9	40.9	40.9	40.9	40.8	40.8	40.8	40.8	40.8	40.0	40.8	40.7	101
	Deformation P		398	0.404	0.410	0.416	0.422	0.428	0.434	0.440	0.446	0.452	0.458	0.464	0.470	0.476	0.482	0.488).494	0.500	0.506	0.512	0.518	0.524	0.530	0.536	0.542	0.548	0.554	0.560	0.566	0.572	0.578	0.584	0.590	0.596	0.602	0.608	0.614	0.620	0.626	0.020	0.644	0.650	0 250
	_	-						120.7 0		121.3 (L	122.0 (L					_					125.7 (_	_	_	_							_		4	_	132.9	_		134.4	_	136.3	_	
	No. Load	0	-	67 11	-		6	-	-		-		┝	┝	-				┝	┝	┝		$\left \right $	_		-	_	-				95 1:		_	_	99 1.		+	102	-			107 1	-	+

Boring No_58_17.HSD

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • (270) 444-9691 • fax (270) 443-3943 email: fhcorporate@flohut.com

Florence & Hutcheson	CONSULTING ENGINEERS

V	
E.	ŀ
ě	
eci	
d	

		Ŀ	(isi)	15.4	15.4	15.5	5.5	15.5	15.6	15.7	15.7	15.7	15.7	5.8	15.8	15.9	15.9	6.1	10.0	10.0	161	6.2	16.2	16.2	16.3	16.3	16.4	16.4	16.4	16.5	C.01	16.7	16.7	16.7	16.7	16.7	16.8	16.7	16.8	16.8	16.9	16.8	16.8	16.9
							_		-		-		-		-	+	9.8	-	-	+	9.9	-	-	10.0	10.0		_		-	+	+			_	_	-	-	-	-	-	-	_	-	103
		ø	(isd)		9.5	9.5	9.5	9.5	9.6	.6	.6			_	-	+	+	+	-	+	-	$\left \right $				-	_	_	_	10.1	+	-	-					_	-	2		-	_	
		4	(isd)	17.9	18.0	18.0	18.0	18.0	18.1	18.1	18.1	18.1	18.2	18.2	18.2	18.3	18.3	18.3	18.5	10.4	18.4	18.4	18.5	18.5	18.5	18.5	18.6	18.6	18.6	18.6	18.6	18.7	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.7	18.7	18.7	18.8	100
		Abar		0.13	0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.12	0.12	0.12	0.11	71.0	0.12	011	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	010	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.09	0.09	0.09	0.09	0000
		\$'1/5'3		4.14	4.19	4.16	4.19	4.21	4.18	4.16	4.18	4.19	4.20	4.19	4.18	4.19	4.18	4.13	4.18	4.19	4.10	4.19	4.19	4.19	4.17	4.19	4.18	4.18	4.16	4.15	4.15	4.15	4.17	4.17	4.17	4.17	4.16	4.17	4.15	4.11	4.10	4.11	4.11	1 06
		ơ'3	(jsd)	6.0	5.9	6.0	6.0	5.9	6.0	6.1	6.0	6.0	6.0	6.1	6.1	6.1	6.2	6.3	7.9	7.0	20	6.2	6.3	6.3	6.3	6.3	6.3	6.3	6.4	6.4	0.4	6.5	6.4	6.5	6.5	6.5	6.5	6.5	6.5	6.6	6.6	6.6	6.6	5 7
		¢'1	(isi)	24.9	24.9	25.0	25.0	25.0	25.1	25.3	25.3	25.3	25.4	25.5	25.5	25.6	25.7	25.9	25.8	25.9	1.02	26.1	26.2	26.2	26.3	26.4	26.4	26.4	26.5	26.6	0.02	26.9	26.9	27.0	27.0	27.0	27.1	27.0	27.0	27.1	27.1	27.1	27.1	010
		G3	(jsi)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	5.8	85	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	C.8 2.9	 2 %	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	
		G1	(isd)	27.4	27.4	27.5	27.5	27.6	27.6	27.7	27.7	27.8	27.8	27.9	27.9	28.0	28.0	28.1	28.2	28.2	28.2	28.4	28.4	28.5	28.5	28.6	28.6	28.6	28.6	28.7	1.87	28.9	28.9	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	000
Corrected	Deviator	Stress	(isi)	18.852	18.923	18.970	19.040	19.074	19.121	19.190	19.236	19.270	19.328	19.373	19.430	19.510	19.543	19.599	19.655	19.711	19.1/9	19.878	19.944	19.954	19.986	20.063	20.106	20.115	20.124	20.155	081.02	20.406	20.437	20.512	20.520	20.539	20.547	20.543	20.528	20.491	20.498	20.494	20.502	00200
-	-	Stress	(isi)	22.168	22.274	22.353	22.458	22.524	22.603	22.709	22.788	22.854	22.947	23.026	23.118	23.237	23.303	23.395	23.488	23.580	020.02	23.857	23.963	24.002	24.068	24.187	24.266	24.306	24.345	24.411	24.4/1	24.000	24.860	24.979	25.018	25.071	25.111	25.137	25.150	25.137	25.177	25.203	25.243	000-00
	4 9					_	_		_	_					_	_	-	-	-	-	+				_	_	_	_	-	+	+	+			_	_	_	-	-		_	15.585	-	_
_	ed	Area			7.05	-l	-	7.07	-	7.09			202								7.10		7.21	\vdash		-	-	-		7.27	+	+		-		-				7.37			-	1 10
-		Pressure	_			1	_	2.6	_	2.4	2.5	2.5	2.5	2.4	2.4	2.4	2.3	2.2	2.3	2.3	2.2	23	2.2	2.2	2.2	2.2	2.2	2.2	2.1	2.1	1.2	2.0	2.1	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.9	1.9	10
0		Pressure Pr	0		40.8	-	-			40.6	40.7	40.7	40.7	40.6	40.6	40.6	40.5	40.4	40.5	40.5	40.5 40.5	40.5	40.4	40.4	40.4	40.4	40.4	40.4	40.3	40.3	40.5	40.2	40.3	40.2	40.2	40.2	40.2	40.2	40.2	40.1	40.1	40.1	40.1	10.0
	-	Deformation P	(in)	0.662	0.668	0.674	0.680	0.686	0.692	0.698	0.704	0.710	0.716	0.722	0.728	0.734	0.740	0.746	0.752	0.758	0.770	0.776	0.782	0.788	0.794	0.800	0.806	0.812	0.818	0.824	0.850	0.000	0.848	0.854	0.860	0.866	0.872	0.878	0.884	0.890	0.896	0.902	0.908	100
-		Load De	(Ibs)	138.2	138.9	139.4	140.0	140.4	140.9	141.6	142.1	142.5	143.1	143.6	144.1	144.9	145.3	145.9	146.4	147.0	14/./	148.8	149.4	149.7	150.1	150.8	151.3	151.5	151.8	152.2	0.201	0.001	155.0	155.7	156.0	156.3	156.6	156.7	156.8	156.7	157.0	157.1	157.4	1 57 5
	N N	No.		110		112	-	114	-	-	-	118		Η			-	124	-	+	121	-	-		-		-	_		137		+	-	-	143		_	_	-	-	_		-	1.50

Boring No_58_17.HSD

2550 Irvin Cobb Drive • Paducah, KY 42003 • PO Box 7267 • Paducah, KY 42002 • (270) 444-9691 • fax (270) 443-3943 email: fhcorporate@flohut.com

	à	(isi)	16.9	17.0	17.0	17.0	17.0	17.0	17.0	17.1	17.1	17.1	17.1	17.2	17.1	17.2	17.2	17.2	17.2	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.4	17.3	17.3	17.4	17.4	17.4	17.4	17.4	
1 H. A.	c	(isi)	10.3	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.1	10.1	10.1	10.1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.6	9.6	6.6	9.6	9.6	9.8	9.8	9.8	9.7	9.7	9.7	9.7	9.6	9.6	9.6	9.5	9.5	9.5	
	٩	(isi)	18.8	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.6	18.6	18.6	18.6	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.4	18.4	18.4	18.4	18.4	18.3	18.3	18.3	18.2	18.2	18.2	18.2	18.1	18.1	18.1	18.0	18.0	18.0	
	Ahar		0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.08	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	
	1 1	60/10	4.08	4.03	4.01	4.02	4.02	3.99	3.96	3.93	3.91	3.91	3.86	3.84	3.83	3.80	3.79	3.77	3.76	3.74	3.73	3.71	3.69	3.69	3.68	3.66	3.62	3.62	3.59	3.58	3.56	3.53	3.52	3.50	3.49	3.46	3.44	3.42	3.41	
	1	(isi)	6.7	6.8	6.8	6.8	6.8	6.8	6.9	6.9	7.0	6.9	7.1	7.1	7.1	7.2	7.2	7.2	7.2	7.3	7.3	7.3	7.4	7.4	7.4	7.4	7.5	7.5	7.5	7.6	7.6	7.7	7.7	7.7	7.7	7.8	7.8	7.9	7.9	
19. A. 19.	٦	(isi)	27.2	27.3	27.3	27.2	27.2	27.3	27.2	27.3	27.3	27.2	27.2	27.2	27.2	27.2	27.1	27.2	27.2	27.3	27.3	27.2	27.2	27.2	27.2	27.1	27.1	27.1	27.0	27.0	27.0	27.0	27.0	27.0	27.0	26.9	26.9	27.0	27.0	
	i	(psi)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	
	ı	(isa)	29.0	29.0	29.0	29.0	28.9	28.9	28.8	28.8	28.8	28.7	28.7	28.6	28.6	28.5	28.5	28.5	28.5	28.5	28.5	28.4	28.3	28.3	28.3	28.2	28.1	28.1	28.0	28.0	27.9	27.9	27.8	27.8	27.7	27.7	27.6	27.6	27.5	
Corrected	Deviator	(isi)	20.523	20.485	20.492	20.455	20.407	20.413	20.343	20.317	20.290	20.231	20.172	20.124	20.087	20.017	19.980	19.954	19.971	20.000	19.952	19.893	19.845	19.841	19.804	19.713	19.644	19.586	19.517	19.480	19.412	19.375	19.317	19.270	19.244	19.155	19.097	19.082	19.046	
	Deviator	(isi)	25.361	25.348	25.388	25.374	25.348	25.388	25.335	25.335	25.335	25.295	25.256	25.229	25.216	25.163	25.150	25.150	25.203	25.269	25.243	25.203	25.177	25.203	25.190	25.111	25.058	25.018	24.965	24.952	24.899	24.886	24.847	24.820	24.820	24.741	24.702	24.715	24.702	
•	Axial	(%)	15.999	16.103	16.207	16.311	16.414	16.518	16.622	16.726	16.829	16.933	17.037	17.141	17.244	17.348	17.452	17.556	17.659	17.763	17.867	17.970	18.074	18.178	18.282	18.385	18.489	18.593	18.697	18.800	18.904	19.008	19.112	19.215	19.319	19.423	19.527	19.630	19.734	
	Corrected	-	┢	7.43			-		-	-			_	-	-	-	7.55	-	_			7.60						_	7.67	-		7.70	-					7.76		ł
-	In Pore	(isa)	1.8	1.7	1.7	1.7	1.7	1.7	1.6	1.6	1.5	1.6	1.4	1.4	1.4	1.3	1.3	1.3	1.3	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.0	1.0	1.0	0.9	0.9	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.6	
,	Pore	-	40.0	39.9	39.9	39.9	39.9	39.9	39.8	39.8	39.7	39.8	39.6	39.6	39.6	39.5	39.5	39.5	39.5	39.4	39.4	39.4	39.3	39.3	39.3	39.3	39.2	39.2	39.2	39.1	39.1	39.0	39.0	39.0	39.0	38.9	38.9	38.8	38.8	
	Axial Deformation	(in)	0.926	0.932	0.938	0.944	0.950	0.956	0.962	0.968	0.974	0.980	0.986	0.992	0.998	1.004	1.010	1.016	1.022	1.028	1.034	1.040	1.046	1.052	1.058	1.064	1.070	1.076	1.082	1.088	1.094	1.100	1.106	1.112	1.118	1.124	1.130	1.136	1.142	
	Deviator		158.1	158.0	158.3	158.2	158.0	158.3	158.0	158.0	158.0	157.7	157.5	157.3	157.2	156.9	156.8	156.8	157.1	157.6	157.4	157.1	157.0	157.1	157.1	156.6	156.2	156.0	155.7	155.6	155.3	155.2	154.9	154.8	154.8	154.3	154.0	154.1	154.0	
	Reading	5	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	

Florence & Hutcheson CONSULTING ENGINEERS D.

Shear Data
B
Specimen

CU Triaxial Test

				Undisturbed	2.655	41.000	18.000
	Sample Data		e Center Site Design	Sample Type:	Specific Gravity:	:TI	PL:
e Location ring No_58_17.HSD	Project Information S	Project No. 38001-1684-048001-1684-04	Project Name: Solar Farm Information & Welcome	Client:	Sample Location: Haywood, TN	Sample Description: Light Gray Lean Clay with Sand	Remarks:
	Fue Location Boring No _58_17.HSD	ue Location oring No_58_17.HSD Project Information Sample Data	ormation roject No. 38001-1684-048001-1684-04	ormation roject No. 38001-1684-048001-1684-04 ect Name: Solar Farm Information & Welcon	oring No_58_17.HSD oring No_58_17.HSD Project Information Project No. 38001-1684-048001-1684-04 Project Name: Solar Farm Information & Welcome Center Site Design Client:	ormation Sample Communication Sample roject No. 38001-1684-048001-1684-04 set Name: Solar Farm Information & Welcome Center 9 Client: Location: Haywood, TN Sp	ormation Sample roject No. 38001-1684-048001-1684-04 ect Name: Solar Farm Information & Welcome Center Client: Location: Haywood, TN Sp Location: Light Gray Lean Clay with Sand

Sample Parameters	Initial	After Consolidation	Final
Diameter (in)	2.825	2.808	
Height (in)	5.845	5.799	
Weight (grams)	1229.30		1237.01
Moisture (%)	24.50		25.28
Dry Density (pcf)	102.72	104.72	
Saturation (%)	106.01	100.00	
Void Ratio	0.611	0.583	

Test Data

Rate of Strain: 0.002222 Cell Pressure (psi): 55.700

Effective Confining Stress (psi): 17.0 Corrected Peak Deviator Stress (psi): 35.983

at reading number:

38

			Ŀ	(psi)	17.0	17.1	16.9	16.6	16.4	16.4	16.5	16.5	16.6	16.7	16.9	17.3	17.7	18.1	18.5	19.0	19.6	20.2	20.7	21.7	22.7	23.0
			_	(F	-	-	-	- -	1	1	1	1	I	1		-		_	_		-	_		_	_	_
			0	(isd)	0.0	2.4	4.1	5.4	6.5	7.5	8.4	9.3	10.2	11.1	11.9	12.7	13.5	14.2	14.9	15.5	16.1	16.6	16.9	17.5	17.8	17.8
			P	(psi)	17.0	19.4	21.2	22.4	23.5	24.5	25.5	26.4	27.2	28.1	29.0	29.8	30.5	31.3	32.0	32.6	33.1	33.6	34.0	34.5	34.8	34.9
			Abar	C.N.S. C.N.S.	0.00	0.49	0.52	0.54	0.55	0.54	0.53	0.53	0.52	0.52	0.51	0.49	0.48	0.46	0.45	0.44	0.42	0.40	0.39	0.37	0.34	0.33
			o'1/o'3		1.00	1.32	1.65	1.96	2.31	2.68	3.10	3.60	4.19	4.95	5.84	6.63	7.45	8.39	9.41	10.04	10.27	10.13	9.98	9.35	8.15	7.86
			¢'3	(psi)	17.0	14.7	12.7	11.2	9.6	8.9	8.0	7.2	6.4	5.6	4.9	4.5	4.2	3.9	3.6	3.4	3.5	3.6	3.8	4.2	5.0	5.2
	No. of the	- AND	¢'1	(psi)	17.0	19.4	21.0	22.0	22.9	23.9	24.9	25.9	26.8	27.8	28.8	30.0	31.2	32.3	33.4	34.5	35.7	36.8	37.7	39.2	40.5	40.9
			G3	(psi)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
	and a state		G1	(psi)	17.0	21.8	25.3	27.8	30.0	32.0	33.9	35.7	37.4	39.2	40.9	42.5	44.1	45.5	46.9	48.1	49.3	50.2	50.9	52.0	52.6	52.7
	Corrected	Deviator	Stress	(isi)	0.000	4.724	8.297	10.804	13.001	14.982	16.853	18.680	20.412	22.166	23.889	25.478	27.024	28.449	29.883	31.092	32.220	33.124	33.895	34.979	35.526	35.656
		Deviator	Stress	(isd)	0.000	4.769	8.396	10.959	13.218	15.264	17.203	19.103	20.909	22.743	24.549	26.223	27.857	29.371	30.899	32.201	33.423	34.419	35.283	36.518	37.156	37.329
)		Axial	Strain	(%)	0.000	0.104	0.207	0.311	0.414	0.518	0.621	0.725	0.828	0.932	1.035	1.139	1.242	1.346	1.450	1.553	1.657	1.760	1.864	2.071	2.278	2.381
)		Corrected	Area	(in2)	6.19	6.20	6.21	6.21	6.22	6.23	6.23	6.24	6.25	6.25	6.26	6.26	6.27	6.28	6.28	6.29	6.30	6.30	6.31	6.32	6.34	6.34
	Change		Pressure	(isi)	0.0	2.3	4.3	5.8	7.1	8.1	9.0	9.6	10.6	11.4	12.1	12.5	12.9	13.2	13.5	13.6	13.6	13.4	13.3	12.9	12.1	11.8
IV		Pore	Pressure	(isd)	38.7	41.0	43.0	44.5	45.8	46.8	47.7	48.5	49.3	50.1	50.8	51.2	51.5	51.8	52.1	52.3	52.2	52.1	51.9	51.5	50.7	50.5
Specimen B		Axial	Deformation Pressure	(in)	0.000	0.006	0.012	0.018	0.024	0.030	0.036	0.042	0.048	0.055	0.061	0.067	0.073	0.079	0.085	0.091	0.097	0.103	0.109	0.121	0.133	0.139
B		Deviator		(Ibs)	1.2	30.7	53.1	69.0	83.0	95.7	107.7	119.5	130.7	142.0	153.2	163.6	173.7	183.1	192.5	200.6	208.2	214.3	219.7	227.3	231.3	232.3
Specimen		Reading Deviator	No.		0		2	e	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	20	22	23

Boring No_58_17.HSD

Florence & Hutcheson	CONSULTING ENGINEERS
N	

	à	(isd)	23.3	23.5	23.8	24.2	24.7	24.8	25.0	25.2	25.6	25.9	26.1	26.2	26.3	26.6	26.8	26.9	27.1	27.2	27.2	27.3	27.3	27.5	27.7	27.8	27.9	27.9	1 0.0	28.1	28.2	28.3	28.4	28.5	28.5	28.6	28.6	28.7	28.7	28.8	29.0	29.0	29.1	29.1
	0	(isa)	17.9	17.9	17.9	17.9	17.9	17.9	17.9	18.0	18.0	18.0	18.0	18.0	18.0	17.9	17.9	17.9	17.9	17.9	17.8	17.8	17.8	17.8	17.7	17.7	17.7	17.7	1.1.1	17.6	17.6	17.6	17.6	17.6	17.5	17.5	17.5	17.5	17.5	17.4	17.4	17.4	17.4	17.4
	A	(isi)	34.9	34.9	34.9	34.9	34.9	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	34.9	34.9	34.9	34.9	34.8	34.8	34.8	34.8	34.7	34.7	54.7	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.5	34.5	34.5	34.5	34.5	34.5	34.4	34.4
	Ahar	TRACT	0.33	0.32	0.31	0.30	0.29	0.28	0.28	0.27	0.26	0.25	0.25	0.25	0.24	0.23	0.23	0.22	0.22	0.22	0.22	0.21	0.21	0.20	0.20	0.19	0.19	0.19	0.19	010	0.18	0.18	0.18	0.17	0.17	0.17	0.17	0.17	0.16	0.16	0.16	0.16	0.15	0.15
	11.1	0 1/0 3	7.65	7.43	7.02	6.70	6.29	6.18	6.11	5.98	5.70	5.52	5.46	5.38	5.32	5.16	5.07	4.98	4.91	4.84	4.82	4.77	4.72	4.64	4.57	4.50	4.47	4.45	4.41	4.20	4.33	4.29	4.24	4.22	4.19	4.17	4.15	4.13	4.10	4.06	4.02	4.00	3.97	3.96
	٦	o 3 (psi)	5.4	5.6	5.9	6.3	6.8	6.9	7.0	7.2	7.7	8.0	8.1	8.2	8.3	8.6	8.8	9.0	9.2	9.3	9.3	9.5	9.6	9.8	9.9	10.1	10.2	10.2	10.4	10.5	10.6	10.7	10.8	10.9	11.0	11.1	1.1.1	11.2	11.3	11.4	11.5	11.6	11.7	11.7
	١	(psi)	41.2	41.4	41.7	42.1	42.6	42.8	42.9	43.1	43.6	43.9	44.0	44.2	44.3	44.5	44.7	44.9	45.0	45.1	45.0	45.1	45.1	45.3	45.4	45.6	45.6	45.6	45.7	1.04	45.8	45.8	46.0	46.0	46.0	46.1	46.1	46.2	46.2	46.3	46.4	46.5	46.5	46.5
	1	03 (psi)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
		(psi)	52.8	52.8	52.8	52.8	52.8	52.9	52.9	52.9	53.0	53.0	53.0	53.0	53.0	52.9	52.9	52.9	52.8	52.8	52.7	52.7	52.6	52.6	52.5	52.5	52.4	52.4	52.3	0.20	52.2	52.2	52.2	52.2	52.1	52.1	52.0	52.0	52.0	51.9	51.9	51.9	51.8	51.8
Corrected	Strees	(psi)	35.799	35.799	35.799	35.786	35.811	35.849	35.874	35.912	35.974	35.948	35.972	35.971	35.983	35.891	35.876	35.849	35.810	35.757	35.692	35.640	35.563	35.536	35.471	35.444	35.379	35.315	35.300	107.00	35.182	35.142	35.140	35.113	35.036	35.034	34.957	34.979	34.927	34.888	34.848	34.833	34.794	34.779
-	Ctrace	(psi)	37.515	37.554	37.594	37.621	37.727	37.807	37.873	37.953	38.099	38.112	38.179	38.219	38.272	38.258	38.285	38.298	38.298	38.285	38.258	38.245	38.205	38.219	38.192	38.205	38.179	38.152	38.179	26 170	38.179	38.179	38.219	38.232	38.192	38.232	38.192	38.258	38.245	38.245	38.245	38.272	38.272	38.298
	Axial	(%)	2.485	2.588	2.692	2.795	3.003	3.106	3.210	3.313	3.520	3.624	3.727	3.831	3.934	4.141	4.245	4.349	4.452	4.556	4.659	4.763	4.866	4.970	5.073	5.177	5.280	5.384	5.487	160.0	5.798	5.902	6.005	6.109	6.212	6.316	6.419	6.523	6.626	6.730	6.833	6.937	7.041	7.144
	Area	(in2)	6.35	6.36	6.36	6.37	6.39	6.39	6.40	6.41	6.42	6.43	6.43	6.44	6.45	6.46	6.47	6.47	6.48	6.49	6.50	6.50	6.51	6.52	6.52	6.53	6.54	6.55	6.55	00.0	6.57	6.58	6.59	6.60	6.60	6.61	6.62	6.63	6.63	6.64	6.65	6.66	6.66	6.67
	Dracenta	(psi)	11.7	11.5	1.11	10.8	10.3	10.1	10.0	9.8	9.4	9.1	9.0	8.8	8.7	8.4	8.2	8.0	7.9	7.7	7.7	7.6	7.5	7.3	7.1	6.9	6.8	6.8	6.7	0.0	6.5	6.4	6.2	6.1	6.1	6.0	5.9	5.9	5.8	5.6	5.5	5.4	5.3	5.3
-	Processing		50.3	50.1	49.8	49.4	48.9	48.8	48.7	48.5	48.0	47.7	47.6	47.5	47.4	47.1	46.9	46.7	46.5	46.4	46.4	46.2	46.1	45.9	45.8	45.6	45.5	45.5	45.3	40.0	45.1	45.0	44.9	44.8	44.7	44.6	44.6	44.5	44.4	44.3	44.2	44.1	44.0	44.0
••••	Axial		0.145	0.151	0.157	0.163	0.175	0.181	0.187	0.193	0.205	0.211	0.217	0.223	0.229	0.241	0.247	0.253	0.259	0.265	0.271	0.277	0.283	0.289	0.295	0.301	0.307	0.313	0.319	625.0	0.337	0.343	0.349	0.355	0.361	0.367	0.373	0.379	0.385	0.391	0.397	0.403	0.409	0.415
	Deviator		233.5	233.7	234.0	234.2	234.8	235.3	235.7	236.2	237.1	237.2	237.6	237.9	238.2	238.1	238.3	238.3	238.3	238.3	238.1	238.0	237.8	237.9	237.7	237.8	237.6	237.4	237.6	0.157	237.6	237.6	237.9	237.9	237.7	237.9	237.7	238.1	238.0	238.0	238.0	238.2	238.2	2383
	Keading	.01	24	25	26	27	29	30	31	32	34	35	36	37	38	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	56	57	58	59	60	61	62	63	64	65	66	67	68	69

Boring No_58_17.HSD

Florence & Hutcheson	CONSULTING ENGINEERS

Specimen B

					Π			species -																											<u> </u>			~		_	_	_	<u>_</u>	٦,	<u>,</u>	٦
	P	(psi)	29.2	29.3	29.4	29.5	29.5	29.5	29.6	29.6	29.6	29.6	29.7	29.7	29.7	29.8	29.8	29.8	29.7	29.7	29.7	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.6	29.(29.6	29.6	29.(29.(29.(29.(29.0	29.6	29.0	29.6	77.1
	0	(jsd)	17.3	17.3	17.2	17.2	17.1	17.1	16.9	16.9	16.8	16.7	16.7	16.6	16.5	16.4	16.4	16.2	16.1	16.0	16.0	15.9	15.8	15.8	15.8	15.7	15.6	15.6	15.5	15.5	15.4	15.4	15.4	15.4	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3
	P	(psi)	34.3	34.3	34.3	34.2	34.2	34.1	34.0	33.9	33.8	33.8	33.7	33.6	33.5	33.5	33.4	33.2	33.1	33.1	33.0	32.9	32.9	32.8	32.8	32.8	32.7	32.6	32.6	32.5	32.5	32.5	32.4	32.4	32.4	32.4	32.4	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	52.5
	Abar		0.15	0.15	0.14	0.14	0.14	0.13	0.13	0.13	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	6'1/6'3		3.90	3.88	3.83	3.80	3.76	3.73	3.67	3.65	3.62	3.60	3.56	3.54	3.50	3.46	3.43	3.38	3.36	3.34	3.33	3.30	3.30	3.28	3.27	3.26	3.23	3.22	3.21	3.19	3.18	3.17	3.16	3.16	3.16	3.16	3.15	3.15	3.15	3.15	3.14	3.14	3.14	3.14	3.13	3.13
	ơ'3	(bsi)	11.9	12.0	12.2	12.3	12.4	12.5	12.7	12.7	12.8	12.9	13.0	13.1	13.2	13.3	13.5	13.6	13.6	13.7	13.7	13.8	13.8	13.8	13.9	13.9	14.0	14.0	14.0	14.1	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3
	¢'1	(psi)	46.5	46.5	46.7	46.7	46.7	46.6	46.5	46.5	46.4	46.4	46.3	46.2	46.2	46.2	46.2	46.0	45.8	45.8	45.7	45.5	45.4	45.4	45.4	45.3	45.2	45.1	45.1	45.1	45.1	45.1	45.0	45.0	44.9	44.9	44.9	44.9	44.9	44.9	44.9	44.8	44.9	44.9	44.8	44.8
	G3	(psi)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
	G1	(isi)	51.6	51.6	51.5	51.4	51.3	51.2	50.9	50.8	50.6	50.5	50.3	50.2	50.0	49.9	49.7	49.4	49.2	49.1	49.0	48.8	48.7	48.6	48.5	48.5	48.3	48.1	48.1	48.0	47.9	47.9	47.8	47.8	47.7	47.7	47.7	47.7	47.7	47.7	47.6	47.6	47.6	47.6	47.6	47.6
Corrected	Stress	(isi)	34.598	34.547	34.482	34.369	34.256	34.119	33.858	33.733	33.597	33.485	33.301	33.153	32.981	32.834	32.711	32.370	32.163	32.041	31.944	31.725	31.652	31.567	31.506	31.433	31.227	31.107	31.035	30.950	30.890	30.865	30.757	30.756	30.684	30.683	30.633	30.619	30.618	30.616	30.591	30.554	30.576	30.562	30.537	30.523
Deviator		(psi)	38.232	38.219	38.192	38.112	38.033	37.926	37.727	37.634	37.528	37.448	37.289	37.169	37.023	36.903	36.810	36.518	36.332	36.239	36.173	36.013	35.974	35.920	35.894	35.854	35.708	35.615	35.575	35.522	35.495	35.509	35.429	35.469	35.429	35.469	35.495	35.522	35.562	35.602	35.615	35.615	35.681	35.708	35.721	35.748
	Strain	(%)	7.455	7.558	7.662	7.765	7.869	7.972	8.179	8.283	8.386	8.490	8.594	8.697	8.801	8.904	9.008	9.215	9.318	9.422	9.525	9.732	9.836	9.940	10.043	10.147	10.354	10.457	10.561	10.664	10.768	10.871	10.975	11.078	11.182	11.286	11.493	11.596	11.700	11.803	11.907	12.010	12.114	12.217	12.321	12.424
Corrected	Area	(in2)		6.70								6.77						-		-			_			-	1		6.92									7.01						7.06	7.06	7.07
Change in Pore C	-	(psi)	5.1	5.0	4.9	4.7	4.6	4.6	4.4	4.3	4.2	4.1	4.0	4.0	3.8	3.7	3.6	3.4	3.4	3.3	3.3	3.2	3.2	3.2	3.2	3.1	3.1	3.0	3.0	2.9	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.7	2.7	2.7	2.7
Pore	é	(isi)	43.8	43.7	43.5	43.4	43.3	43.2	43.0	43.0	42.9	42.8	42.7	42.6	42.5	42.4	42.2	42.1	42.1	42.0	42.0	41.9	41.9	41.9	41.8	41.8	41.7	41.7	41.7	41.6	41.5	41.5	41.5	41.5	41.5	41.5	41.5	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4
Axial	ion	(in)	0.433	0.439	0.445	0.451	0.457	0.463	0.475	0.481	0.487	0.493	0.499	0.505	0.511	0.517	0.523	0.535	0.541	0.547	0.553	0.565	0.571	0.577	0.583	0.589	0.601	0.607	0.613	0.619	0.625	0.631	0.637	0.643	0.649	0.655	0.667	0.673	0.679	0.685	0.691	0.697	0.703	0.709	0.715	0.721
Deviator		(lbs)	237.9	237.9	237.7	237.2	236.7	236.0	234.8	234.2	233.6	233.1	232.1	231.4	230.4	229.7	229.1	227.3	226.2	225.6	225.2	224.2	223.9	223.6	223.5	223.2	222.3	221.7	221.5	221.2	221.0	221.1	220.6	220.8	220.6	220.8	221.0	221.2	221.4	221.6	221.7	221.7	222.1	222.3	222.4	222.6
cading 1	No. Load		72	73	74	75	76	17	64	80	81	82	83	84	85	86	87	89	90	16	92	94	95	96	76	86	100	101	102	103	104	105	106	107	108	109	111	112	113	114	115	116	117	118	119	120

Boring No_58_17.HSD

cheson	INEERS
& Hutch	NG ENGI
Florence {	CONSULT

	Ā	(isd)	29.6	29.6	29.6	29.6	29.6	29.5	29.6	29.6	29.6	29.6	29.6	29.7	29.7	29.8	29.8	29.8	29.9	29.9	29.9	29.9	29.9	30.0	30.0	30.0	30.0	30.0	30.1	30.1	30.1	30.2	30.1	30.2	30.2	30.3	30.3	30.3	30.3	30.4	30.4	30.4	30.6	30.6	30.6	30.6
	0	(bsi)	15.3	15.3	15.3	15.3	15.3	15.2	15.2	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.4	15.4	15.4	15.3	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
	A	(isd)	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.3	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5	32.4	32.5	32.4	32.4
	Abar		0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06
	e'./e'.	e 21 2	3.13	3.13	3.14	3.14	3.13	3.13	3.12	3.13	3.13	3.13	3.12	3.11	3.11	3.10	3.10	3.10	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.08	3.09	3.08	3.09	3.09	3.09	3.08	3.08	3.07	3.07	3.07	3.06	3.05	3.03	3.03	3.02	3.02
	, b	(bsi)	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.4	14.4	14.5	14.5	14.5	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.7	14.7	14.7	14.7	14.7	14.8	14.7	14.8	14.8	14.8	14.8	14.8	14.8	14.9	14.9	14.9	15.0	15.0	15.2	15.2	15.2	15.2
	.'E	(isi)	44.8	44.9	44.9	44.9	44.9	44.8	44.8	44.9	44.9	44.9	44.9	44.9	45.0	45.0	45.0	45.1	45.2	45.2	45.2	45.1	45.2	45.3	45.3	45.4	45.4	45.4	45.4	45.5	45.4	45.5	45.5	45.6	45.6	45.7	45.7	45.7	45.7	45.8	45.8	45.9	46.0	46.0	46.0	46.0
	é	(isi)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
	ė	(isd)	47.6	47.6	47.6	47.6	47.5	47.5	47.5	47.6	47.6	47.6	47.6	47.5	47.5	47.5	47.5	47.6	47.6	47.6	47.6	47.6	47.6	47.7	47.7	47.7	47.7	47.7	47.7	47.8	47.7	47.8	47.8	47.9	47.9	47.9	47.9	47.9	47.9	47.9	47.9	47.9	47.8	47.9	47.8	47.8
Corrected	Stress	(isa)	30.521	30.542	30.563	30.560	30.511	30.474	30.483	30.538	30.547	30.532	30.518	30.503	30.511	30.508	30.505	30.547	30.566	30.574	30.604	30.532	30.562	30.615	30.656	30.708	30.704	30.711	30.695	30.735	30.708	30.725	30.776	30.850	30.878	30.872	30.856	30.850	30.833	30.872	30.844	30.849	30.810	30.831	30.769	30.763
	Stress	(isi)	35.788	35.854	35.920	35.960	35.947	35.947	36.000	36.106	36.160	36.186	36.213	36.239	36.292	36.332	36.372	36.465	36.532	36.585	36.664	36.625	36.704	36.810	36.903	37.010	37.050	37.103	37.129	37.222	37.236	37.302	37.408	37.541	37.621	37.661	37.687	37.727	37.754	37.847	37.860	37.913	37.913	38.033	38.006	38.046
	Strain	(%)	12.528	12.631	12.735	12.839	12.942	13.046	13.149	13.253	13.356	13.460	13.563	13.667	13.770	13.874	13.977	14.081	14.185	14.288	14.392	14.495	14.599	14.702	14.806	14.909	15.013	15.116	15.220	15.323	15.427	15.531	15.634	15.738	15.841	15.945	16.048	16.152	16.255	16.359	16.462	16.566	16.669	16.877	16.980	17.084
	Corrected					7.11	7.11	7.12				-	-	-	-		H			1		\vdash		┢				7.30			-	-	-		0-1	_	-	-				7.42	7.43	7.45	7.46	7.47
	In Pore	(isi)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.6	2.6	2.5	2.5	2.5	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.3	2.3	2.3	2.2	2.3	2.3	2.3	2.2	2.2	2.2	2.1	2.1	2.1	2.0	1.9	1.9	1.8	1.8
	Pressure	(isi)	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.3	41.3	41.2	41.2	41.2	41.1	41.1	41.1	41.1	41.1	41.1	41.1	41.0	41.0	41.0	41.0	41.0	40.9	41.0	40.9	40.9	40.9	40.9	40.9	40.9	40.8	40.8	40.8	40.7	40.7	40.5	40.5	40.5	40.5
	Axial Deformation		0.727	0.733	0.739	0.745	0.751	0.757	0.763	0.769	0.775	0.781	0.787	0.793	0.799	0.805	0.811	0.817	0.823	0.829	0.835	0.841	0.847	0.853	0.859	0.865	0.871	0.877	0.883	0.889	0.895	0.901	0.907	0.913	0.919	0.925	0.931	0.937	0.943	0.949	0.955	0.961	0.967	0.979	0.985	166.0
		-	222.8	223.2	223.6	223.9	223.8	223.8	224.1	224.8	225.1	225.3	225.4	225.6	225.9	226.2	226.4	227.0	227.4	227.7	228.2	228.0	228.5	229.1	229.7	230.4	230.6	230.9	231.1	231.7	231.8	232.2	232.8	233.7	234.2	234.4	234.6	234.8	235.0	235.6	235.6	236.0	236.0	236.7	236.5	236.8
1	Reading Deviator		121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	163	164	165

Boring No_58_17.HSD

Florence & Hutcheson	CONSULTING ENGINEERS
ľ	

,	•	•	I	
1		1		
	2	5	l	ľ
	ε		I	
•	ε	5	I	
	\$	2	l	
,	5	2		

Corrected Axial Deviator Area Strain Stress (in2) (%) (psi) 7.49 17.291 38.139 7.50 17.394 38.139 7.51 17.498 38.258 7.51 17.498 38.328 7.55 18.015 38.484 7.55 18.015 38.591 7.55 18.015 38.591 7.55 18.015 38.591 7.56 18.119 38.591 7.57 18.222 38.670 7.58 18.225 38.670 7.56 18.123 38.591 7.56 18.123 38.570 7.60 18.5326 38.670 7.56 18.433 38.570 7.61 18.543 38.760 7.62 18.433 38.760 7.63 18.433 38.760 7.64 18.543 38.760 7.65 18.433 38.760	operation	2													Ī			
Axial Pore in Pressure Axial Deviator \mathbf{F}_{11} \mathbf{F}_{10} <th></th> <th></th> <th></th> <th></th> <th>Change</th> <th></th> <th></th> <th></th> <th>Corrected</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					Change				Corrected									
	Reading	Deviator		Pore	in Pore	Corrected	Axial	Deviator	Deviator									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	Load	Deformation	Pressure	Pressure	Area	Strain	Stress	Stress	61	G3	6'1	G'3	6'1/6'3	Abar	P	0	Ā
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(Ibs)	(in)	(isd)	(isd)	(in2)	(%)	(isi)	(psi)	(jsi)	(jsd)	(isi)	(isi)			(psi)	(jsi)	(isi)
238.1 1009 404 1.7 7.50 17.348 38.258 30.80 47.9 17.0 46.1 15.3 30.1 006 32.4 15.4 238.5 1015 40.3 1.6 7.51 17.408 38.328 30.805 47.9 17.0 46.2 15.4 300 0.05 32.4 15.4 15.4 238.5 1037 40.2 1.6 7.53 18.015 33.38 30.760 47.8 17.0 46.2 15.4 300 32.4 15.4 2395 1057 300 1.3 7.56 18.015 33.83 30.800 47.8 17.0 46.5 15.7 22.4 15.4 240.7 1057 390 1.2 7.56 18.015 38.70 30.800 47.8 17.0 46.5 15.7 25.4 15.4 15.4 240.7 1065 39.7 1.1 7.58 18.325 38.870 30.800 47.8 17.0	167	237.4	1.003	40.4	1.7	7.49	17.291	38.139	30.761	47.8	17.0	46.1	15.3	3.01	0.06	32.4	15.4	30.7
238.5 1015 40.3 1.6 7.51 17.498 38.325 30.807 47.8 17.0 46.2 15.4 3.00 0.05 32.4 15.4 238.6 1.031 40.3 1.6 7.32 17.601 38.333 30.807 47.8 17.0 46.2 15.5 2.97 0.05 32.4 15.4 238.5 1.045 40.1 1.5 7.35 18.015 38.570 30.801 47.8 17.0 46.2 15.6 2.97 0.05 32.4 15.4 240.7 1.067 39.9 1.1 7.56 18.119 38.501 30.801 47.8 17.0 46.5 15.7 2.97 0.05 32.4 15.4 240.7 1.067 39.9 1.1 7.56 18.19 38.870 30.80 47.9 17.0 46.7 15.8 15.4 15.4 15.4 240.7 1.069 39.6 0.9 38.870 30.803 47.9	168	238.1	1.009	40.4	1.7	7.50	17.394	38.258	30.820	47.9	17.0	46.1	15.3	3.01	0.06	32.4	15.4	30.7
238.6 1021 40.3 1.6 7.52 17.601 38.338 30.807 47.8 17.0 46.2 15.4 30.0 0.05 32.4 15.4 235.8 1033 40.0 1.5 7.54 17.808 38.378 30.760 47.8 17.0 46.5 15.5 2.99 0.05 32.4 15.4 240.7 1057 39.9 1.2 7.56 18.119 38.591 30.81 47.9 17.0 46.5 15.7 2.96 0.04 32.4 15.4 240.7 1067 39.9 1.1 7.58 18.326 38.870 30.800 47.9 17.0 46.6 15.8 2.97 0.04 32.5 15.4 15.4 240.7 1065 39.9 1.1 7.58 18.300 30.850 47.9 17.0 46.7 15.8 2.97 0.04 32.5 15.4 15.4 240.7 1087 39.8 30.850 30.850	169	238.5	1.015	40.3	1.6	7.51	17.498	38.325	30.835	47.9	17.0	46.2	15.4	3.00	0.05	32.5	15.4	30.8
238.8 1.033 40.2 1.6 7.54 17.808 38.378 30.760 47.8 17.0 46.2 15.5 2.99 0.05 32.4 15.4 239.5 1.045 40.1 1.5 7.55 18.015 38.494 30.768 47.9 17.0 46.5 15.7 2.97 0.05 32.4 15.4 240.7 1.067 39.9 1.1 7.56 18.219 38.801 30.801 47.9 17.0 46.5 15.7 2.95 0.04 32.5 15.4 15.4 240.7 1.065 39.7 1.1 7.58 18.320 38.810 30.801 47.8 17.0 46.5 15.7 0.04 32.5 15.4 15.4 240.7 1.067 39.7 1.1 7.58 18.320 38.810 30.801 47.9 17.0 46.7 15.7 2.99 0.04 32.4 15.4 240.7 1.067 39.7 1.1 7.58 18.320 38.810 30.881 47.9 17.0 46.7 15.7 2.99 0.04 32.4 15.4 242.4 1.075 39.9 1.1 7.62 18.740 30.850 47.9 17.0 46.7 16.7 2.91 0.03 32.4 15.4 242.4 1.075 39.9 1.1 7.62 18.844 39.967 30.844 47.9 17.0 46.7 16.7 2.91 0.03 32.5 15.4 <	170	238.6	1.021	40.3	1.6	7.52	17.601	38.338	30.807	47.8	17.0	46.2	15.4	3.00	0.05	32.4	15.4	30.8
239.5 1.045 40.1 1.5 7.55 18.015 38.44 30.768 47.8 17.0 46.5 15.7 296 0.04 32.4 15.4 240.7 1.057 39.9 1.2 7.56 18.119 38.507 30.846 47.8 17.0 46.5 15.7 296 0.04 32.4 15.4 15.4 240.7 1.069 39.6 0.9 7.59 18.320 38.710 30.70 47.8 17.0 46.5 16.1 29.1 $0.32.4$ 15.4 <td< td=""><td>172</td><td>238.8</td><td>1.033</td><td>40.2</td><td>1.6</td><td>7.54</td><td>17.808</td><td>38.378</td><td>30.760</td><td>47.8</td><td>17.0</td><td>46.2</td><td>15.5</td><td>2.99</td><td>0.05</td><td>32.4</td><td>15.4</td><td>30.8</td></td<>	172	238.8	1.033	40.2	1.6	7.54	17.808	38.378	30.760	47.8	17.0	46.2	15.5	2.99	0.05	32.4	15.4	30.8
	174	239.5	1.045	40.1	1.5	7.55	18.015	38.484	30.768	47.8	17.0	46.3	15.6	2.97	0.05	32.4	15.4	31.0
2407 1.057 39.9 1.2 7.57 18.222 38.670 30.840 47.9 17.0 46.6 15.8 2.95 0.04 32.5 15.4 15.4 2407 1.065 39.7 1.1 7.58 18.326 38.670 30.800 47.8 17.0 46.8 16.0 2.95 0.04 32.5 15.4 15.4 2416 1.075 39.9 1.2 7.59 18.430 38.570 47.9 17.0 46.8 15.9 2.94 0.04 32.5 15.4 15.4 241.6 1.075 39.9 1.1 7.62 18.740 38.949 30.867 47.9 17.0 46.8 15.9 2.94 0.04 32.5 15.4 15.4 242.5 1.093 39.7 1.1 7.62 18.740 38.949 30.867 47.9 17.0 46.8 16.0 2.97 0.04 32.5 15.4 15.4 247.5 1.093 39.7 1.1 7.62 18.947 39.985 47.9 17.0 47.0 16.1 2.92 0.04 32.5 15.4 243.5 1.105 39.6 0.9 7.66 18.947 39.855 47.9 17.0 47.0 16.1 2.92 0.03 32.5 15.4 243.5 1.111 39.5 0.99 7.66 19.965 39.148 30.856 47.9 17.0 47.0 16.1 2.92 0.03 <t< td=""><td>175</td><td>240.2</td><td>1.051</td><td>40.0</td><td>1.3</td><td>7.56</td><td>18.119</td><td>38.591</td><td>30.815</td><td>47.9</td><td>17.0</td><td>46.5</td><td>15.7</td><td>2.96</td><td>0.04</td><td>32.4</td><td>15.4</td><td>31.1</td></t<>	175	240.2	1.051	40.0	1.3	7.56	18.119	38.591	30.815	47.9	17.0	46.5	15.7	2.96	0.04	32.4	15.4	31.1
240.7 1.063 39.7 1.1 7.58 18.326 38.670 30.800 47.8 17.0 46.8 16.0 2.93 0.04 32.4 15.4 15.4 240.9 1.065 39.6 0.9 7.59 18.430 38.710 30.793 47.8 17.0 46.9 16.1 2.91 0.03 32.4 15.4 15.4 241.6 1.075 39.9 1.2 7.60 18.533 38.830 30.867 47.9 17.0 46.7 15.8 2.95 0.04 32.5 15.4 15.4 242.5 1.093 39.7 1.1 7.62 18.947 39.867 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 15.4 242.5 1.093 39.7 1.1 7.62 18.740 38.947 30.885 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 15.4 242.5 1.093 39.7 1.1 7.62 18.947 39.885 47.9 17.0 47.0 16.1 2.97 0.03 32.5 15.4 15.4 243.6 1.117 39.5 0.9 7.66 19.154 39.128 30.885 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 15.4 243.6 1.117 39.5 0.9 7.66 19.154 39.128 30.830 47.9 17.0 47.0 <td>176</td> <td>240.7</td> <td>1.057</td> <td>39.9</td> <td>1.2</td> <td>7.57</td> <td>18.222</td> <td>38.670</td> <td>30.840</td> <td>47.9</td> <td>17.0</td> <td>46.6</td> <td>15.8</td> <td>2.95</td> <td>0.04</td> <td>32.5</td> <td>15.4</td> <td>31.2</td>	176	240.7	1.057	39.9	1.2	7.57	18.222	38.670	30.840	47.9	17.0	46.6	15.8	2.95	0.04	32.5	15.4	31.2
240.9 1.069 39.6 0.9 7.59 18.430 38.710 30.793 47.8 17.0 46.7 15.8 29.1 0.03 32.4 15.4 15.4 241.6 1.075 39.9 1.2 7.60 18.533 38.830 30.867 47.9 17.0 46.7 15.8 2.95 0.04 32.5 15.4 15.4 242.4 1.087 39.9 1.1 7.62 18.740 38.837 30.867 47.9 17.0 46.8 15.9 2.04 32.5 15.4 15.4 242.5 1.093 39.6 1.0 7.64 18.947 30.867 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 243.5 1.109 39.6 1.0 7.64 18.947 30.826 47.9 17.0 47.0 16.1 2.91 0.04 32.5 15.4 243.5 1.107 39.6 0.9 7.66 19.051 39.122 30.836 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 243.4 1107 39.5 0.9 7.66 19.154 39.188 30.830 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 243.4 1117 39.5 0.9 7.66 19.154 39.188 30.830 47.9 17.0 47.0 16.1 2.96 0.03 32.5 15.4	177	240.7	1.063	39.7	1.1	7.58	18.326	38.670	30.800	47.8	17.0	46.8	16.0	2.93	0.04	32.4	15.4	31.4
241.6 1.075 39.9 1.2 7.60 18.535 38.830 30.867 47.9 17.0 46.7 15.8 2.95 0.04 32.5 15.4 15.4 242.4 1.087 39.8 1.1 7.62 18.740 38.949 30.867 47.9 17.0 46.8 15.9 2.94 0.04 32.5 15.4 242.5 1.093 39.7 1.1 7.62 18.740 38.949 30.867 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 242.5 1.093 39.6 1.0 7.64 18.947 39.082 30.848 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 243.2 1.105 39.6 0.9 7.66 19.971 39.082 47.9 17.0 47.0 16.1 2.92 0.03 32.5 15.4 243.4 1.105 39.5 0.9 7.66 19.154 39.128 30.826 47.9 17.0 47.0 16.1 2.99 0.03 32.5 15.4 243.4 1.105 39.5 0.9 7.66 19.154 39.188 30.826 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 243.4 1.105 39.5 0.9 7.69 19.658 39.188 30.826 47.9 17.0 47.2 16.7 2.90 0.03 22.5 15.4 <	178	240.9	1.069	39.6	0.9	7.59	18.430	38.710	30.793	47.8	17.0	46.9	16.1	2.91	0.03	32.4	15.4	31.5
242.4 1.087 39.8 1.1 7.62 18.740 38.949 30.867 47.9 17.0 46.8 15.9 2.94 0.04 32.5 15.4 15.4 242.5 1.093 39.7 1.1 7.63 18.844 38.976 30.848 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 15.4 243.2 1.099 39.6 1.0 7.64 18.947 39.082 30.834 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 15.4 243.4 1.105 39.5 0.9 7.66 19.154 39.188 30.899 47.9 17.0 47.1 16.1 2.91 0.03 32.5 15.4 15.4 243.5 1.117 39.5 0.9 7.66 19.154 39.188 30.899 47.9 17.0 47.1 16.1 2.91 0.03 32.5 15.4 15.4 243.5 1.117 39.5 0.6 7.69 19.258 39.148 30.826 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 15.4 243.6 1.117 39.5 0.6 7.69 19.258 39.148 30.826 47.9 17.0 47.0 16.2 2.91 0.03 32.5 15.4 244.4 1.135 39.2 0.6 7.66 19.465 39.258 30.816 47.9 17.0	179	241.6	1.075	39.9	1.2	7.60	18.533	38.830	30.850	47.9	17.0	46.7	15.8	2.95	0.04	32.5	15.4	31.2
242.5 1.093 39.7 1.1 7.63 18.844 38.976 30.848 47.9 17.0 46.8 16.0 2.93 0.04 32.5 15.4 243.2 1.099 39.6 1.0 7.64 18.947 39.082 30.894 47.9 17.0 47.0 16.1 2.92 0.03 32.5 15.4 243.4 1.105 39.6 0.9 7.66 19.154 39.122 30.899 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 243.4 1.117 39.5 0.9 7.66 19.154 39.188 30.826 47.9 17.0 47.1 16.2 2.91 0.03 32.5 15.4 243.5 1.117 39.5 0.6 7.67 19.258 39.148 30.826 47.9 17.0 47.0 16.2 2.91 0.03 32.5 15.4 244.4 1.129 39.2 0.6 7.70 19.268 39.281 30.811 47.8 17.0 47.2 16.7 2.87 0.02 32.5 15.4 244.4 1.155 39.1 0.4 7.71 19.662 39.281 30.811 47.8 17.0 47.2 16.7 2.86 0.01 32.5 15.4 245.4 1.117 39.1 0.4 7.71 19.672 39.411 30.819 47.9 17.0 47.5 16.6 2.86 0.01 32.5 15.4	181	242.4	1.087	39.8	1.1	7.62	18.740	38.949	30.867	47.9	17.0	46.8	15.9	2.94	0.04	32.5	15.4	31.3
243.2 1.099 39.6 1.0 7.64 18.947 39.082 30.894 47.9 17.0 47.0 16.1 2.92 0.03 32.5 15.4 243.4 1.105 39.6 0.9 7.65 19.051 39.122 30.885 47.9 17.0 47.0 16.1 2.91 0.03 32.5 15.4 243.9 1.111 39.5 0.9 7.66 19.154 39.122 30.889 47.9 17.0 47.1 16.2 2.91 0.03 32.5 15.4 243.6 1.117 39.5 0.8 7.67 19.258 39.148 30.826 47.9 17.0 47.0 16.2 2.91 0.03 32.5 15.4 244.3 1.129 39.2 0.6 7.69 19.465 39.255 30.830 47.9 17.0 47.2 16.4 2.88 0.02 32.5 15.4 244.4 1.155 39.2 0.6 7.70 19.568 39.281 30.811 47.8 17.0 47.5 16.6 2.86 0.01 32.5 15.4 245.4 1.147 39.1 0.4 7.71 19.672 39.411 30.839 47.9 17.0 47.6 16.7 2.86 0.01 32.5 15.4 245.4 1.147 39.1 0.4 7.74 19.983 39.467 30.819 47.9 17.0 47.6 16.7 2.86 0.01 32.5 15.4	182	242.5	1.093	39.7	1.1	7.63	18.844	38.976	30.848	47.9	17.0	46.8	16.0	2.93	0.04	32.5	15.4	31.4
243.4 1.105 39.6 0.9 7.65 19.051 39.122 30.885 47.9 17.0 47.1 16.1 2.91 0.03 32.5 15.4 243.9 1.111 39.5 0.9 7.66 19.154 39.188 30.899 47.9 17.0 47.1 16.2 2.91 0.03 32.5 15.4 243.6 1.117 39.5 0.8 7.67 19.258 39.148 30.826 47.9 17.0 47.0 16.2 2.91 0.03 32.5 15.4 15.4 244.3 1.129 39.2 0.6 7.69 19.465 39.281 30.811 47.6 17.0 47.2 16.7 2.87 0.02 32.5 15.4 15.4 244.4 1.155 39.1 0.4 7.7 19.672 39.811 47.6 16.7 2.86 0.01 32.5 15.4 15.4	183	243.2	1.099	39.6	1.0	7.64	18.947	39.082	30.894	47.9	17.0	47.0	16.1	2.92	0.03	32.5	15.4	31.5
243:9 1.11 39.5 0.9 7.66 19.154 39.188 30.899 47.9 17.0 47.1 16.2 2.91 0.03 32.5 15.4 243.6 1.117 39.5 0.8 7.67 19.258 39.148 30.826 47.9 17.0 47.0 16.2 2.90 0.03 32.5 15.4 244.3 1.129 39.3 0.6 7.70 19.568 39.281 30.811 47.8 17.0 47.2 16.4 2.88 0.02 32.5 15.4 15.4 244.4 1.155 39.1 0.6 7.70 19.568 39.281 30.811 47.8 17.0 47.5 16.5 2.87 0.02 32.5 15.4 15.4 244.4 1.155 39.1 0.4 7.71 19.672 39.411 30.809 47.9 17.0 47.5 16.6 2.86 0.01 32.5 15.4 15.4 245.4 1.147 39.1 <td< td=""><td>184</td><td>243.4</td><td>1.105</td><td>39.6</td><td>0.9</td><td>7.65</td><td>19.051</td><td>39.122</td><td>30.885</td><td>47.9</td><td>17.0</td><td>47.0</td><td>16.1</td><td>2.91</td><td>0.03</td><td>32.5</td><td>15.4</td><td>31.6</td></td<>	184	243.4	1.105	39.6	0.9	7.65	19.051	39.122	30.885	47.9	17.0	47.0	16.1	2.91	0.03	32.5	15.4	31.6
243.6 1.117 39.5 0.8 7.67 19.258 39.148 30.826 47.9 17.0 47.0 16.2 2.90 0.03 32.5 15.4 244.3 1.129 39.3 0.6 7.69 19.465 39.255 30.830 47.9 17.0 47.2 16.4 2.88 0.02 32.5 15.4 244.4 1.155 39.2 0.6 7.70 19.568 39.281 30.811 47.8 17.0 47.3 16.5 2.87 0.02 32.5 15.4 15.4 245.4 1.141 39.1 0.4 7.7 19.672 39.441 30.899 47.9 17.0 47.5 16.6 2.86 0.01 32.5 15.4 245.4 1.147 39.0 0.3 7.72 19.776 39.467 30.879 47.9 17.0 47.6 16.7 2.84 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.72	185	243.9	1.11.1	39.5	0.9	7.66	19.154	39.188	30.899	47.9	17.0	47.1	16.2	2.91	0.03	32.5	15.4	31.6
244.3 1.129 39.3 0.6 7.69 19.465 39.255 30.830 47.9 17.0 47.2 16.4 2.88 0.02 32.5 15.4 244.4 1.135 39.2 0.6 7.70 19.568 39.281 30.811 47.8 17.0 47.5 16.5 2.87 0.02 32.4 15.4 245.4 1.141 39.1 0.4 7.71 19.672 39.441 30.899 47.9 17.0 47.5 16.6 2.86 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.72 19.776 39.467 30.879 47.9 17.0 47.6 16.7 2.84 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.74 19.983 39.467 30.819 47.9 17.0 47.4 16.6 2.86 0.01 32.4 15.4	186	243.6	1.117	39.5	0.8	7.67	19.258	39.148	30.826	47.9	17.0	47.0	16.2	2.90	0.03	32.5	15.4	31.6
244.4 1.135 39.2 0.6 7.70 19.568 39.281 30.811 47.8 17.0 47.3 16.5 2.87 0.02 32.4 15.4 245.4 1.141 39.1 0.4 7.71 19.672 39.441 30.899 47.9 17.0 47.5 16.6 2.86 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.72 19.776 39.467 30.879 47.9 17.0 47.6 16.7 2.86 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.74 19.983 39.467 30.819 47.9 17.0 47.4 16.6 2.86 0.01 32.4 15.4 245.8 1.160 39.1 0.4 7.74 19.999 39.520 30.834 47.9 17.0 47.4 16.6 2.86 0.01 32.5 15.4	188	244.3	1.129	39.3	0.6	7.69	19.465	39.255	30.830	47.9	17.0	47.2	16.4	2.88	0.02	32.5	15.4	31.8
245.4 1.141 39.1 0.4 7.71 19.672 39.441 30.899 47.9 17.0 47.5 16.6 2.86 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.72 19.776 39.467 30.879 47.9 17.0 47.6 16.7 2.84 0.01 32.5 15.4 245.6 1.147 39.0 0.3 7.72 19.776 39.467 30.879 47.9 17.0 47.6 16.7 2.84 0.01 32.5 15.4 245.8 1.159 39.1 0.4 7.74 19.983 39.494 30.819 47.9 17.0 47.4 16.6 2.86 0.01 32.4 15.4 245.9 1.160 39.1 0.4 7.74 19.999 39.520 30.834 47.9 17.0 47.4 16.6 2.86 0.01 32.5 15.4 245.9 1.160 39.1 0.4 7.74 19.9999 <	189	244.4	1.135	39.2	0.6	7.70	19.568	39.281	30.811	47.8	17.0	47.3	16.5	2.87	0.02	32.4	15.4	31.9
245.6 1.147 39.0 0.3 7.72 19.776 39.467 30.879 47.9 17.0 47.6 16.7 2.84 0.01 32.5 15.4 245.8 1.159 39.1 0.4 7.74 19.983 39.494 30.819 47.9 17.0 47.4 16.6 2.86 0.01 32.4 15.4 245.8 1.159 39.1 0.4 7.74 19.983 39.494 30.819 47.9 17.0 47.4 16.6 2.86 0.01 32.4 15.4 245.9 1.160 39.1 0.4 7.74 19.999 39.520 30.834 47.9 17.0 47.4 16.6 2.86 0.01 32.5 15.4	190	245.4	1.141	39.1	0.4	17.7	19.672	39.441	30.899	47.9	17.0	47.5	16.6	2.86	0.01	32.5	15.4	32.1
245.8 1.159 39.1 0.4 7.74 19.983 39.494 30.819 47.9 17.0 47.4 16.6 2.86 0.01 32.4 15.4 245.9 1.160 39.1 0.4 7.74 19.999 39.520 30.834 47.9 17.0 47.4 16.6 2.86 0.01 32.5 15.4 245.9 1.160 39.1 0.4 7.74 19.999 39.520 30.834 47.9 17.0 47.4 16.6 2.86 0.01 32.5 15.4	191	245.6	1.147	39.0	0.3	7.72	19.776	39.467	30.879	47.9	17.0	47.6	16.7	2.84	0.01	32.5	15.4	32.2
245.9 1.160 39.1 0.4 7.74 19.999 39.520 30.834 47.9 17.0 47.4 16.6 2.86 0.01 32.5 15.4	193	245.8	1.159	39.1	0.4	7.74	19.983	39.494	30.819	47.9	17.0	47.4	16.6	2.86	0.01	32.4	15.4	32.0
	194	245.9	1.160	39.1	0.4	7.74	19.999	39.520	30.834	47.9	17.0	47.4	16.6	2.86	0.01	32.5	15.4	32.0

Florence & Hutcheson 12

CONSULTING ENGINEERS		
1		

Specimen C Shear Data CU Triaxial Test	
File Location Boring No 58 17.HSD	
Project Information	Sample Data

1227.09

2.823 5.854 1229.10 25.38 101.94

Weight (grams)

Sample Type: Undisturbed Specific Gravity: 2.655 LL: 41.000 PL: 18.000

Sample Description: Light Gray Lean Clay with Sand

Remarks:

Sample Location: Haywood, TN

Client:

25.18

105.74 100.00 0.568

107.65 0.623

Dry Density (pcf)

Moisture (%)

Saturation (%)

Void Ratio

Final

After Consolidation

Initial

Sample Parameters

Diameter (in)

Project Name: Solar Farm Information & Welcome Center Site Design

Project No. 38001-1684-048001-1684-04

Height (in)

2.786 5.792

Test Data

Rate of Strain: 0.002222 72.900

Cell Pressure (psi):

34.0 Effective Confining Stress (psi): Corrected Peak Deviator Stress (psi):

22 at reading number: 48.056

Г																			٦	٦	٦	٦	٦		٦
		Ā	(psi)	34.0	33.9	33.5	33.2	33.0	32.8	32.8	33.0	33.1	33.4	34.4	34.7	35.1	35.5	36.3	36.8	37.2	37.7	38.2	38.6	39.0	39.4
		0	(isi)	0.0	2.3	5.5	7.8	9.8	11.6	14.7	16.1	17.4	18.5	21.2	21.9	22.4	22.9	23.5	23.7	23.9	24.0	24.0	24.0	24.0	23.9
		A	(jsi)	34.0	36.4	39.5	41.9	43.9	45.7	48.7	50.1	51.4	52.6	55.3	55.9	56.4	56.9	57.5	57.7	57.9	58.0	58.1	58.1	58.0	58.0
		Abar		0.00	0.53	0.55	0.55	0.55	0.55	0.54	0.53	0.53	0.52	0.49	0.48	0.48	0.47	0.45	0.44	0.43	0.42	0.41	0.41	0.40	0.39
		\$'1/6'3		1.00	1.15	1.39	1.62	1.85	2.09	2.62	2.90	3.20	3.48	4.23	4.41	4.52	4.63	4.66	4.63	4.57	4.50	4.40	4.29	4.19	4.10
		G'3	(isi)	34.0	31.6	28.0	25.4	23.1	21.2	18.1	16.9	15.8	14.9	13.1	12.8	12.7	12.6	12.8	13.1	13.4	13.7	14.1	14.6	15.0	15.4
		¢'1	(bsi)	34.0	36.2	39.0	41.0	42.8	44.5	47.5	49.0	50.5	51.9	55.6	56.6	57.5	58.3	59.8	60.5	61.1	61.7	62.2	62.6	63.0	63.3
		G 3	(jsd)	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0
		وا وا	(isi)	34.0	38.7	45.0	49.7	53.7	57.3	63.4	66.2	68.8	1.17	76.5	77.8	78.9	79.8	81.0	81.4	81.8	82.0	82.1	82.1	82.0	81.9
Corrected	Deviator	Stress	(psi)	0.000	4.622	10.972	15.653	19.680	23.243	29.393	32.158	34.729	37.015	42.458	43.768	44.809	45.715	46.979	47.403	47.710	47.963	48.056	48.030	47.965	47.887
Co	Deviator D	Stress	(jsi)	0.000	4.668	_	15.825	19.927	23.569	29.897	32.757	35.428	37.816	43.577	44.994	46.141	47.152	48.623 4	-	49.527	49.837	49.986	50.013	49.999	_
	vial De			0 000.			_	_	-		-	_	_	_	_	.555 46		-			-	-	_		.592 49
	AX	Strain	(6)	0.0	0.1	0.207	0.3	0.4	0.5	0.7	0.8	0.9	1.0	1.3	1.4	1.5	1.6	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5
	Corrected	Area	(in2)	6.10	6.10	6.11	6.12	6.12	6.13	6.14	6.15	6.16	6.16	6.18	6.19	6.19	6.20	6.21	6.22	6.23	6.23	6.24	6.25	6.25	6.26
Change	in Pore	Pressure	(isi)	0.0	2.5	6.0	8.7	10.9	12.8	15.9	17.2	18.3	19.1	20.9	21.2	21.3	21.4	21.2	21.0	20.7	20.4	19.9	19.5	19.0	18.6
	Pore	Pressure	(isi)	38.9	41.3	44.9	47.5	49.8	51.7	54.8	56.0	57.1	58.0	59.8	60.1	60.2	60.3	60.1	59.8	59.5	59.2	58.8	58.3	57.9	57.5
	Axial	Deformation Pressure	(in)	0.000	0.006	0.012	0.018	0.024	0.030	0.042	0.048	0.055	0.061	0.079	0.085	0.091	0.097	0.109	0.115	0.121	0.127	0.133	0.139	0.145	0.151
– ں	Deviator	Load D	(Ibs)	0.2	28.6	67.7	96.7	121.7	143.9	182.5	199.9	216.2	230.8	265.9	274.5	281.5	287.7	296.7	299.9	302.2	304.1	305.0	305.2	305.1	304.9
Specimen C	Reading Deviator	No.		0	1	2	en	4	5	7	8	6	10	13	14	15	16	18	19	20	21	22	23	24	25

Boring No_58_17.HSD

Florence & Hutcheson	CONSULTING ENGINEERS

C
E
Ě
SC.
d

σ_3 σ_1 σ_3 σ_1/σ_3 σ_1/σ_1 σ_1/σ_1			Stress Stress		Pressure Area Strain Stress Stress (nsi) (in2) (%) (nsi) (nsi)	Pressure Pressure Area Strain Stress Stress (psi) (psi) (in2) (%) (psi) (psi) 57.1 18.2 6.27 2.696 49.945 47.809	tion Pressure Pressure Area Strain Stress Stress (psi) (psi) (in2) (%) (psi) (psi) 571 100 700 5000 10000
(psi) (psi) (psi) 63.6 15.8 4.02 0.38 63.6 16.1 3.96 0.38 64.1 16.5 3.83 0.37 64.3 16.8 3.83 0.36 64.4 17.0 3.79 0.36 64.4 17.7 3.67 0.36 64.9 17.7 3.67 0.36 64.9 17.7 3.67 0.34 65.0 18.0 3.61 0.34 65.1 18.2 3.56 0.31 65.2 18.0 3.40 0.32 65.5 19.9 3.40 0.32 65.5 19.9 3.44 0.32 65.5 19.9 3.34 0.32 65.5 19.9 3.34 0.32 65.5 18.7 3.34 0.32 65.5 19.9 3.24 0.32				Strain Stress	(in2) (%) (nsi)	(psi) (in2) (%) (psi) 18.2 6.27 2.696 49.945	(psi) (psi) (in2) (%) (psi)
63.6 15.8 4.02 0.38 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.36 0.38 0.37 0.36 0.38 0.37 0.36	(isi)	(ist	(psi)	(%) (%)	(1cd) (0/) (mi)	18.2 6.27 2.696 49.945	21001 2020 202 201 123
63.9 16.1 3.96 0.38 0.37 0.37 64.1 16.5 3.83 0.36 0.37 0.36 64.4 17.0 3.79 0.36 0.35 0.36 64.8 17.7 3.67 0.36 0.35 0.36 64.9 17.7 3.67 0.35 0.36 0.35 65.0 18.0 3.61 0.35 0.34 0.34 65.1 18.2 3.53 0.33 0.33 0.33 65.5 18.0 3.46 0.33 0.33 0.33 65.5 18.0 3.44 0.33 0.33 0.33 65.5 18.0 3.44 0.33 0.33 0.55 0.33 65.5 18.0 3.44 0.33 0.33 0.33 0.33 65.5 19.0 3.44 0.33 0.33 0.55 0.33 0.33	81.9	809	49.945	2.696 49.945	6.27 2.696 49.945		21.1 18.2 0.2/ 2.696 49.945
64.1 16.5 3.89 0.37 0.36 64.3 17.6 3.79 0.36 0.36 64.4 17.7 3.77 0.36 0.36 64.8 17.7 3.67 0.35 0.36 64.9 17.7 3.67 0.35 0.36 65.0 18.0 3.61 0.35 0.34 65.1 18.2 3.56 0.34 0.34 65.2 18.0 3.61 0.33 0.33 65.5 18.0 3.46 0.33 0.33 65.5 19.0 3.44 0.33 0.33 65.5 19.0 3.44 0.33 0.31 65.5 19.0 3.44 0.33 0.31 65.5 19.0 3.34 0.33 0.31 65.5 19.0 3.44 0.33 0.31 65.5 19.0 3.24 0.3	81.8	731	49.918	2.799 49.918	6.27 2.799 49.918	17.9 6.27 2.799 49.918	56.8 17.9 6.27 2.799 49.918
64.3 16.8 3.83 0.36 64.4 17.0 3.79 0.36 64.8 17.7 3.67 0.35 64.9 17.7 3.67 0.35 64.9 17.8 3.64 0.34 65.0 18.0 3.61 0.35 65.1 18.2 3.56 0.34 65.2 18.0 3.51 0.33 65.2 18.6 3.51 0.33 65.5 18.0 3.46 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.34 0.33 65.5 19.0 3.34 0.33 65.5 19.0 3.34 0.33 65.5 19.0 3.24	81.6	588	49.824	2.903 49.824	2.903 49.824	17.6 6.28 2.903 49.824	56.4 17.6 6.28 2.903 49.824
64.4 17.0 3.79 0.36 0.35 64.8 17.7 3.67 0.35 0.35 64.9 17.8 3.61 0.35 0.35 65.0 18.0 3.61 0.35 0.35 65.0 18.0 3.61 0.34 0.34 65.1 18.2 3.53 0.34 0.34 65.2 18.3 3.54 0.34 0.34 65.2 18.7 3.54 0.33 0.33 65.5 18.7 3.44 0.33 0.32 65.5 19.0 3.44 0.32 0.32 65.5 19.6 3.34 0.33 0.32 65.5 19.9 3.34 0.33 0.32 65.5 19.9 3.34 0.33 0.31 65.5 19.9 3.34 0.31 0.32 65.5 19.9 3.24 0.3	81.6	510	49.797	3.007 49.797	6.29 3.007 49.797	17.3 6.29 3.007 49.797	56.1 17.3 6.29 3.007 49.797
64.8 17.5 3.71 0.35 64.9 17.7 3.67 0.35 65.0 18.0 3.61 0.34 65.1 18.2 3.561 0.35 65.1 18.2 3.561 0.34 65.2 18.3 3.56 0.34 65.2 18.5 3.53 0.33 65.5 18.6 3.54 0.33 65.5 18.9 3.44 0.33 65.5 19.0 3.44 0.32 65.5 19.9 3.44 0.32 65.5 19.6 3.34 0.32 65.5 19.6 3.34 0.32 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.32	81.5	419	49.756	3.110 49.756	6.29 3.110 49.756	6.29 3.110 49.756	55.9 17.1 6.29 3.110 49.756
64.8 17.7 3.67 0.35 64.9 17.8 3.61 0.34 65.0 18.0 3.61 0.34 65.1 18.2 3.56 0.34 65.2 18.3 3.56 0.34 65.2 18.3 3.55 0.33 65.2 18.5 3.51 0.33 65.5 19.0 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.4 3.39 0.31 65.5 19.4 3.39 0.32 65.5 19.4 3.39 0.31 65.5 19.4 3.39 0.31 65.5 19.4 3.39 0.31 65.5 19.6 3.24 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.32 0.31 65.7 19.7 3.32	81.3	277	49.716	3.318 49.716	6.31 3.318 49.716	16.6 6.31 3.318 49.716	55.4 16.6 6.31 3.318 49.716
64.9 17.8 3.64 0.34 65.0 18.0 3.61 0.34 65.1 18.2 3.58 0.34 65.2 18.3 3.561 0.34 65.2 18.5 3.55 0.34 65.2 18.5 3.55 0.33 65.5 18.7 3.48 0.33 65.5 19.0 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.4 3.39 0.32 65.5 19.4 3.39 0.32 65.5 19.4 3.39 0.31 65.7 19.7 3.34 0.32 65.7 19.7 3.34 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.32 0.31 65.7 19.7 3.32 0.31 65.7 19.7 3.23	81.2	.173	49.662	3.421 49.662	6.31 3.421 49.662	16.4 6.31 3.421 49.662	55.2 16.4 6.31 3.421 49.662
65.0 18.0 3.61 0.34 65.1 18.2 3.58 0.34 65.2 18.3 3.56 0.34 65.2 18.5 3.53 0.34 65.2 18.6 3.51 0.33 65.5 18.6 3.51 0.33 65.5 19.0 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.6 3.46 0.32 65.5 19.4 3.39 0.31 65.5 19.4 3.39 0.31 65.7 19.7 3.34 0.32 65.7 19.7 3.39 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.30 0.31 65.7 19.7 3.32 0.31 65.7 19.9 3.30	81.1	960	49.635	3.525 49.635	6.32 3.525 49.635	16.2 6.32 3.525 49.635	55.1 16.2 6.32 3.525 49.635
65.1 18.2 3.58 0.34 65.2 18.3 3.56 0.34 65.2 18.5 3.51 0.33 65.2 18.6 3.51 0.33 65.5 18.7 3.48 0.33 65.5 19.0 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.4 3.39 0.32 65.5 19.4 3.39 0.31 65.7 19.4 3.33 0.31 65.7 19.4 3.33 0.31 65.7 19.4 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.9 20.4 3.23	81.0	992	49.581	49.581	6.33 3.629 49.581	16.0 6.33 3.629 49.581	54.9 16.0 6.33 3.629 49.581
65.2 18.3 3.56 0.34 65.2 18.5 3.51 0.33 65.2 18.5 3.51 0.33 65.3 18.7 3.48 0.33 65.5 18.7 3.48 0.33 65.5 19.0 3.44 0.32 65.5 19.2 3.46 0.32 65.5 19.2 3.44 0.32 65.5 19.4 3.37 0.32 65.5 19.4 3.37 0.31 65.7 19.7 3.34 0.31 65.7 19.7 3.37 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32	81.0	928	49.567 46.928	3.732 49.567	3.732 49.567	15.9 6.33 3.732 49.567	15.9 6.33 3.732 49.567
65.2 18.5 3.53 0.33 65.2 18.6 3.51 0.33 65.3 18.7 3.48 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.44 0.32 65.5 19.2 3.37 0.32 65.5 19.4 3.39 0.32 65.5 19.4 3.37 0.32 65.5 19.4 3.37 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.30 0.31 65.9 20.1 3.24 0.31 65.9 20.1 3.24	80.9	.850	49.540	3.836 49.540	6.34 3.836 49.540	15.7 6.34 3.836 49.540	54.6 15.7 6.34 3.836 49.540
65.2 18.6 3.51 0.33 65.3 18.7 3.48 0.33 65.5 19.0 3.44 0.33 65.5 19.0 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.2 3.46 0.33 65.5 19.2 3.44 0.32 65.5 19.2 3.44 0.32 65.5 19.6 3.37 0.32 65.5 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.20	80.8	.734	┥	3.940 49.473	6.35 3.940 49.473	15.6 6.35 3.940 49.473	54.4 15.6 6.35 3.940 49.473
65.3 18.7 3.48 0.33 65.4 18.9 3.44 0.32 65.5 19.0 3.44 0.32 65.5 19.2 3.42 0.32 65.5 19.2 3.42 0.32 65.5 19.2 3.40 0.32 65.6 19.4 3.39 0.31 65.7 19.7 3.34 0.32 65.7 19.7 3.37 0.32 65.7 19.7 3.33 0.31 65.7 19.9 3.326 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.9 20.1 3.22	80.7	.657	49.446	4.044 49.446	4.044 49.446	15.5 6.36 4.044 49.446	54.3 15.5 6.36 4.044 49.446
65.4 18.9 3.46 0.33 65.5 19.0 3.44 0.32 65.5 19.2 3.42 0.32 65.5 19.3 3.40 0.32 65.6 19.4 3.39 0.32 65.6 19.4 3.39 0.32 65.6 19.4 3.39 0.32 65.7 19.7 3.34 0.32 65.7 19.7 3.34 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.9 20.1 3.32 0.31 65.9 20.1 3.32 0.31 65.9 20.1 3.32 0.31 65.9 20.1 3.22	80.6	.554	49.392	4.147 49.392	6.36 4.147 49.392	15.3 6.36 4.147 49.392	54.2 15.3 6.36 4.147 49.392
65.5 19.0 3.44 0.32 65.5 19.2 3.42 0.32 65.6 19.4 3.39 0.32 65.6 19.4 3.39 0.32 65.6 19.4 3.39 0.32 65.6 19.6 3.34 0.32 65.7 19.7 3.34 0.31 65.7 19.7 3.34 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.32 0.31 65.9 20.1 3.23 0.31 65.9 20.1 3.22 0.31 65.9 20.1 3.22 0.30 65.9 20.1 3.22 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.22	80.6	.529		4.251 49.419	6.37 4.251 49.419	15.2 6.37 4.251 49.419	54.0 15.2 6.37 4.251 49.419
65.5 19.2 3.42 0.32 0.32 65.6 19.4 3.39 0.32 0.32 65.6 19.4 3.39 0.32 0.32 65.6 19.6 3.36 0.31 0.32 65.7 19.7 3.34 0.31 0.32 65.7 19.7 3.36 0.31 0.31 65.7 19.7 3.33 0.31 0.31 65.7 19.9 3.32 0.31 0.31 65.7 19.9 3.32 0.31 0.31 65.7 19.9 3.30 0.31 0.32 65.9 20.1 3.22 0.31 0.30 65.9 20.1 3.22 0.30 0.30 65.9 20.1 3.22 0.30 0.30 65.9 20.1 3.22 0.30 0.30 65.9 20.4 3.23 0.3	80.5	.452	49.392	4.355 49.392	6.38 4.355 49.392	15.0 6.38 4.355 49.392	53.9 15.0 6.38 4.355 49.392
65.5 19.3 3.40 0.32 0.32 65.6 19.4 3.39 0.32 0.32 65.6 19.6 3.36 0.31 0.32 65.6 19.6 3.36 0.31 0.32 65.7 19.7 3.34 0.31 0.32 65.7 19.7 3.33 0.31 0.31 65.7 19.7 3.33 0.31 0.31 65.7 19.9 3.30 0.31 0.31 65.7 19.9 3.30 0.31 0.31 65.9 20.1 3.29 0.31 0.30 65.9 20.1 3.27 0.30 0.30 65.9 20.1 3.27 0.30 0.30 65.9 20.1 3.226 0.30 0.30 65.9 20.1 3.226 0.30 0.30 65.9 20.4 3.23 0	80.4	.349	49.338	4.458 49.338	6.38 4.458 49.338	14.9 6.38 4.458 49.338	53.7 14.9 6.38 4.458 49.338
65.6 19.4 3.39 0.32 0.32 65.6 19.5 3.37 0.32 0.31 65.7 19.7 3.36 0.31 0.31 65.7 19.7 3.34 0.31 0.31 65.7 19.7 3.33 0.31 0.31 65.7 19.7 3.33 0.31 0.31 65.7 19.9 3.30 0.31 0.31 65.7 19.9 3.30 0.31 0.51 65.9 20.1 3.29 0.31 0.30 65.9 20.1 3.27 0.30 0.30 65.9 20.1 3.27 0.30 0.30 65.9 20.1 3.27 0.30 0.30 65.9 20.1 3.23 0.30 0.30 65.9 20.4 3.23 0.30 0.30 65.9 20.4 3.23 0.3	80.3	.259	49.298 46.259	4.562 49.298	6.39 4.562 49.298	14.8 6.39 4.562 49.298	53.6 14.8 6.39 4.562 49.298
65.6 19.5 3.37 0.32 0.31 65.7 19.7 3.36 0.31 0.31 65.7 19.7 3.34 0.31 0.31 65.7 19.7 3.33 0.31 0.31 65.7 19.7 3.33 0.31 0.31 65.7 19.9 3.30 0.31 0.31 65.7 19.9 3.30 0.31 0.31 65.8 20.0 3.29 0.31 0.31 65.9 20.1 3.23 0.31 0.30 65.9 20.1 3.23 0.31 0.30 65.9 20.1 3.23 0.31 0.30 65.9 20.1 3.23 0.30 0.30 65.9 20.2 3.224 0.30 0.30 65.9 20.4 3.23 0.30 0.30 65.9 20.4 3.23 $0.$	80.3	.208	49.298	4.666 49.298	6.40 4.666 49.298	14.7 6.40 4.666 49.298	53.5 14.7 6.40 4.666 49.298
65.6 19.6 3.36 0.31 65.7 19.7 3.34 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.9 3.32 0.31 65.7 19.9 3.30 0.31 65.7 19.9 3.30 0.31 65.8 20.0 3.29 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.20 0.30 65.9 20.4 3.22	80.2	.118	49.257	4.769 49.257	6.40 4.769 49.257	14.6 6.40 4.769 49.257	53.4 14.6 6.40 4.769 49.257
65.7 19.7 3.34 0.31 65.7 19.7 3.33 0.31 65.7 19.7 3.33 0.31 65.7 19.8 3.32 0.31 65.7 19.9 3.30 0.31 65.8 19.9 3.30 0.31 65.8 20.0 3.29 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.23	80.1	.093	49.284	4.873 49.284	6.41 4.873 49.284	14.5 6.41 4.873 49.284	53.3 14.5 6.41 4.873 49.284
65.7 19.7 3.33 0.31 65.7 19.8 3.32 0.31 65.7 19.9 3.30 0.31 65.8 19.9 3.30 0.31 65.8 19.9 3.30 0.31 65.8 20.0 3.29 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.2 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.23	80.0	.003	49.244 46.003	4.977 49.244	6.42 4.977 49.244	14.4 6.42 4.977 49.244	53.2 14.4 6.42 4.977 49.244
65.7 19.8 3.32 0.31 65.7 19.9 3.30 0.31 65.8 19.9 3.30 0.31 65.8 20.0 3.29 0.31 65.8 20.01 3.28 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.2 3.26 0.30 65.9 20.2 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.22 0.30 65.9 20.6 3.22 0.30 65.9 20.6 3.22 0.30 65.9 20.6 3.22	80.0	.978	49.271	5.080 49.271	6.42 5.080 49.271	14.3 6.42 5.080 49.271	53.2 14.3 6.42 5.080 49.271
65.7 19.9 3.30 0.31 65.8 20.0 3.29 0.31 65.8 20.1 3.29 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.2 3.25 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.20	79.9	.888	-	49.230	6.43 5.184 49.230	14.2 6.43 5.184 49.230	53.1 14.2 6.43 5.184 49.230
65.8 19.9 3.30 0.31 65.8 20.0 3.29 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.2 3.26 0.30 65.9 20.3 3.25 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18	79.9	.837	49.230	5.288 49.230	6.44 5.288 49.230	14.2 6.44 5.288 49.230	53.0 14.2 6.44 5.288 49.230
65.8 20.0 3.29 0.31 65.9 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.1 3.27 0.30 65.9 20.2 3.26 0.30 65.9 20.3 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.5 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30	79.9	.825	-	49.271	6.45 5.391 49.271	14.1 6.45 5.391 49.271	53.0 14.1 6.45 5.391 49.271
659 20.1 3.28 0.31 65.9 20.1 3.27 0.30 65.9 20.2 3.26 0.30 65.8 20.3 3.25 0.30 65.8 20.3 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18	79.8	.761	49.257	5.495 49.257	6.45 5.495 49.257	14.0 6.45 5.495 49.257	52.9 14.0 6.45 5.495 49.257
65.9 20.1 3.27 0.30 65.9 20.2 3.26 0.30 65.8 20.3 3.25 0.30 65.8 20.3 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18	79.8	.773	49.325	5.599 49.325	6.46 5.599 49.325	14.0 6.46 5.599 49.325	52.8 14.0 6.46 5.599 49.325
65.9 20.2 3.26 0.30 65.8 20.3 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.5 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30	79.8	.748	49.352	5.702 49.352	6.47 5.702 49.352	13.9 6.47 5.702 49.352	52.8 13.9 6.47 5.702 49.352
65.8 20.3 3.25 0.30 65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.5 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30	79.7	769.	49.352	49.352	5.806 49.352	13.9 6.47 5.806 49.352	52.7 13.9 6.47 5.806 49.352
65.9 20.4 3.24 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 65.9 20.5 3.21 0.30 65.9 20.5 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30	79.6	582	49.338	6.013 49.338	6.49 6.013 49.338	13.8 6.49 6.013 49.338	52.6 13.8 6.49 6.013 49.338
65.9 20.4 3.23 0.30 65.9 20.4 3.23 0.30 66.0 20.5 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30	79.6	.555	49.419	6.221 49.419	6.221 49.419	13.7 6.50 6.221 49.419	52.5 13.7 6.50 6.221 49.419
65.9 20.4 3.23 0.30 66.0 20.5 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.20	79.6	517	49.432	6.324 49.432	6.51 6.324 49.432	13.6 6.51 6.324 49.432	52.5 13.6 6.51 6.324 49.432
66.0 20.5 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.20 65.9 20.7 3.18 0.20	79.5	.465	49.432	6.428 49.432	6.52 6.428 49.432	13.6 6.52 6.428 49.432	13.6 6.52 6.428 49.432
65.9 20.6 3.21 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.20 65.9 20.7 3.18 0.20	79.5	438	49.513	6.636 49.513	6.53 6.636 49.513	13.5 6.53 6.636 49.513	52.4 13.5 6.53 6.636 49.513
65.9 20.6 3.20 0.30 65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.20 65.9 20.7 3.18 0.20	79.4	375	49.500	6.739 49.500	6.54 6.739 49.500	13.5 6.54 6.739 49.500	13.5 6.54 6.739 49.500
65.9 20.6 3.20 0.30 65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.20 65.9 20.7 3.18 0.20 65.9 20.7 3.18 0.20 65.9 20.7 3.18 0.20	79.4	.336	49.513	6.843 49.513	6.55 6.843 49.513	13.4 6.55 6.843 49.513	52.3 13.4 6.55 6.843 49.513
65.9 20.7 3.19 0.30 65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.29 65.9 20.7 3.18 0.29 65.9 20.7 3.18 0.29	79.4	310	49.540	6.947 49.540	6.55 6.947 49.540	13.4 6.55 6.947 49.540	52.3 13.4 6.55 6.947 49.540
65.9 20.7 3.18 0.30 65.9 20.7 3.18 0.29 65.9 20.7 3.18 0.29	79.3	246	49.527	7.050 49.527	6.56 7.050 49.527	13.4 6.56 7.050 49.527	52.2 13.4 6.56 7.050 49.527
65.9 20.7 3.18 0.29	79.2	194	49.527	7.154 49.527	6.57 7.154 49.527	13.3 6.57 7.154 49.527	52.2 13.3 6.57 7.154 49.527
	79.2	.143	49.527 45.143	7.258 49.527	6.58 7.258 49.527	13.3 6.58 7.258 49.527	52.2 13.3 6.58 7.258 49.527
67.0 /1.6 8.07 6.09	1.97	092	49.527	7.361 49.527	6.58 7.361 49.527	13.2 6.58 7.361 49.527	52.1 13.2 6.58 7.361 49.527
65.9 20.9 3.16 0.29	79.1	053	49.540	49.540	7.465 49.540	6.59 7.465 49.540	13.2 6.59 7.465 49.540
650 209 315 029	79.0	976	+	7 569 49 513	6 60 7 569 49 513	13.2 6.60 7.569 49.513	52.0 13.2 6.60 7.569 49.513

Boring No_58_17.HSD

Specimen C

				Change I				Courses 1									
eading D	eviator	Axial	Pore	in Pore	Corrected	Axial	Deviator	Deviator									
No. Load	Load	Def	d	-	Area	Strain	Stress	Stress	G1	G3	¢' ₁	6' ₃	6'1/6'3	Abar	P	0	P'
	(Ibs)		(isi)	(isi)	(in2)	(%)	(psi)	(jsi)	(isi)	(isi)	(isi)	(isi)			(bsi)	(jsd)	(psi)
74	301.9	0.445	52.0	13.1	6.61	7.672	49.486	44.900	78.9	34.0	65.8	20.9	3.15	0.29	56.5	22.5	43.4
75	302.0	0.451	51.9	13.1	6.61	7.776	49.500	44.861	78.9	34.0	65.8	21.0	3.14	0.29	56.5	22.4	43.4
76	301.7	0.457	51.9	13.1	6.62	7.880	49.446	44.760	78.8	34.0	65.7	21.0	3.13	0.29	56.4	22.4	43.3
77	301.9	0.463	51.9	13.0	6.63	7.983	49.486	44.746	78.8	34.0	65.8	21.0	3.13	0.29	56.4	22.4	43.4
78	301.9	0.469	51.9	13.0	6.63	8.087	49.473	44.683	78.7	34.0	65.7	21.0	3.12	0.29	56.4	22.3	43.4
64	301.9	0.475	51.8	12.9	6.64	8.191	49.473	44.631	78.7	34.0	65.7	21.1	3.11	0.29	56.4	22.3	43.4
80	302.0	0.481	51.8	13.0	6.65	8.294	49.500	44.605	78.6	34.0	65.7	21.1	3.12	0.29	56.3	22.3	43.4
81	302.2	0.487	51.7	12.9	6.66	8.398	49.527	44.578	78.6	34.0	65.7	21.2	3.11	0.29	56.3	22.3	43.4
82	302.0	0.493	51.7	12.9	6.66	8.502	49.500	44.502	78.5	34.0	65.7	21.2	3.10	0.29	56.3	22.3	43.4
83	302.4	0.499	51.7	12.9	6.67	8.605	49.567	44.512	78.6	34.0	65.7	21.2	3.10	0.29	56.3	22.3	43.4
84	302.4	0.505	51.7	12.9	6.68	8.709	49.554	44.449	78.5	34.0	65.6	21.2	3.10	0.29	56.3	22.2	43.4
85	302.7	0.511	51.7	12.9	6.69	8.813	49.608	44.446	78.5	34.0	65.6	21.2	3.10	0.29	56.3	22.2	43.4
86	302.8	0.517	51.7	12.9	6.70	8.916	49.621	44.407	78.5	34.0	65.6	21.2	3.10	0.29	56.2	22.2	43.4
87	302.8	0.523	51.7	12.8	6.70	9.020	49.621	44.356	78.4	34.0	65.6	21.2	3.09	0.29	56.2	22.2	43.4
88	302.7	0.529	51.6	12.8	6.71	9.124	49.608	44.292	78.3	34.0	65.6	21.3	3.08	0.29	56.2	22.1	43.4
89	303.0	0.535	51.6	12.8	6.72	9.228	49.662	44.290	78.3	34.0	65.6	21.3	3.08	0.29	56.2	22.1	43.4
90	302.9	0.541	51.6	12.7	6.73	9.331	49.635	44.214	78.3	34.0	65.6	21.3	3.07	0.29	56.2	22.1	43.4
91	302.9	0.547	51.5	12.7	6.73	9.435	49.648	44.175	78.2	34.0	65.6	21.4	3.07	0.29	56.1	22.1	43.5
92	302.8	0.553	51.5	12.6	6.74	9.539	49.621	44.099	78.1	34.0	65.5	21.4	3.06	0.29	56.1	22.0	43.5
94	302.9	0.565	51.4	12.6	6.76	9.746	49.648	44.020	78.1	34.0	65.5	21.5	3.05	0.29	56.1	22.0	43.5
95	303.1	0.571	51.4	12.6	6.76	9.850	49.675	43.993	78.0	34.0	65.4	21.5	3.05	0.29	56.0	22.0	43.4
97	303.1	0.583	51.4	12.5	6.78	10.057	49.675	43.890	77.9	34.0	65.4	21.5	3.04	0.29	56.0	21.9	43.5
98	303.3	0.589	51.4	12.5	6.79	10.161	49.716	43.875	77.9	34.0	65.4	21.5	3.04	0.29	56.0	21.9	43.5
100	303.6	0.601	51.3	12.5	6.80	10.368	49.756	43.808	77.9	34.0	65.4	21.6	3.03	0.28	55.9	21.9	43.5
101	303.5	0.607	51.3	12.4	6.81	10.472	49.743	43.744	77.8	34.0	65.3	21.6	3.03	0.28	55.9	21.9	43.5
103	303.8	0.619	51.3	12.4	6.83	10.679	49.783	43.677	77.7	34.0	65.3	21.6	3.02	0.28	55.9	21.8	43.5
104	303.8	0.625	51.2	12.4	6.84	10.783	49.797	43.638	77.7	34.0	65.3	21.7	3.01	0.28	55.9	21.8	43.5
105	304.0	0.631	51.2	12.3	6.84	10.886	49.824	43.610	77.7	34.0	65.3	21.7	3.01	0.28	55.8	21.8	43.5
106	304.0	0.637	51.2	12.3	6.85	10.990	49.824	43.559	77.6	34.0	65.3	21.7	3.00	0.28	55.8	21.8	43.5
107	304.0	0.643	51.2	12.3	6.86	11.094	49.824	43.507	77.6	34.0	65.3	21.7	3.00	0.28	55.8	21.8	43.5
108	304.0	0.649	51.1	12.3	6.87	11.197	49.824	43.455	77.5	34.0	65.2	21.8	2.99	0.28	55.8	21.7	43.5
109	304.3	0.655	51.1	12.3	6.88	11.301	49.878	43.451	77.5	34.0	65.2	21.8	2.99	0.28	55.8	21.7	43.5
110	304.2	0.661	51.1	12.2	6.88	11.405	49.864	43.388	77.4	34.0	65.2	21.8	2.99	0.28	55.7	21.7	43.5
111	304.3	0.667	51.0	12.1	6.89	11.508	49.878	43.348	77.4	34.0	65.2	21.9	2.98	0.28	55.7	21.7	43.6
112	304.5	0.673	51.0	12.1	6.90	11.612	49.905	43.320	77.4	34.0	65.2	21.9	2.98	0.28	55.7	21.7	43.6
113	304.4	0.679	50.9	12.1	6.91	11.716	49.891	43.256	77.3	34.0	65.2	22.0	2.97	0.28	55.7	21.6	43.6
114	304.7	0.685	50.9	12.1	6.92	11.820	49.945	43.252	77.3	34.0	65.2	22.0	2.97	0.28	55.7	21.6	43.6
115	304.9	0.691	50.9	12.0	6.92	11.923	49.972	43.224	77.3	34.0	65.3	22.0	2.96	0.28	55.7	21.6	43.7
117	305.5	0.703	50.8	12.0	6.94	12.131	50.067	43.204	77.2	34.0	65.3	22.1	2.96	0.28	55.6	21.6	43.7
119	305.4	0.715	50.7	11.9	6.96	12.338	50.053	43.088	77.1	34.0	65.2	22.2	2.94	0.28	55.6	21.5	43.7
120	305.6	0.721	50.7	11.9	6.96	12.442	50.080	43.060	77.1	34.0	65.2	22.2	2.94	0.28	55.6	21.5	43.7
121	305.6	0.727	50.7	11.8	6.97	12.545	50.080	43.008	77.1	34.0	65.2	22.2	2.94	0.28	55.5	21.5	43.7
122	305.6	0.733	50.6	11.8	6.98	12.649	50.080	42.956	77.0	34.0	65.2	22.3	2.93	0.27	55.5	21.5	43.7
123	305.6	0.739	50.6	11.7	6.99	12.753	50.094	42.916	77.0	34.0	65.2	22.3	2.92	0.27	55.5	21.5	45.8

Boring No_58_17.HSD

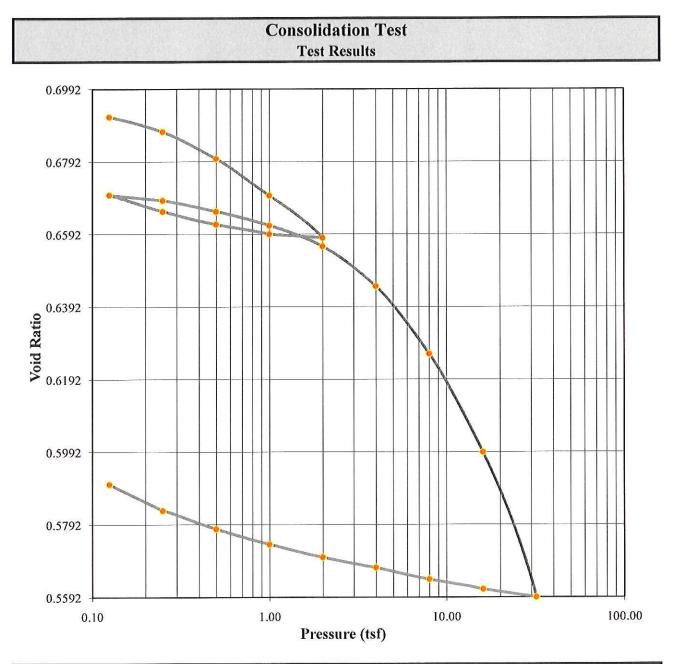
Florence & Hutcheson	CONSULTING ENGINEERS
P	

[

l
I
ŀ
I
I
l

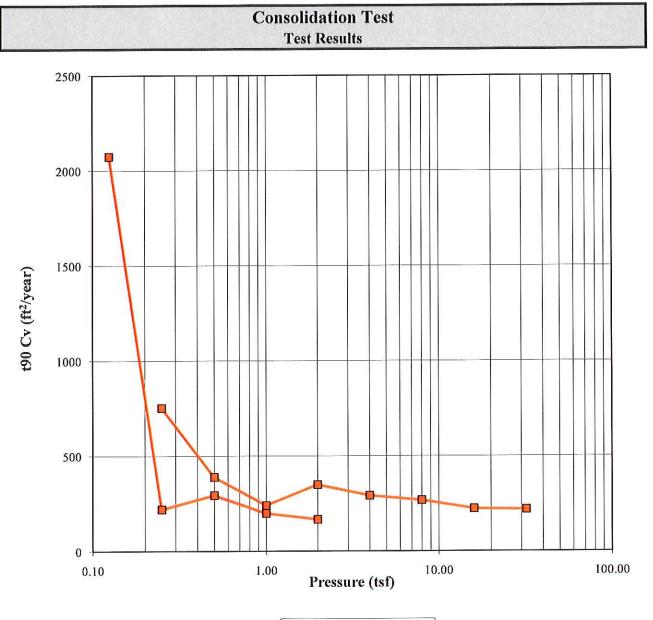
									ŀ								
Danding	Daviator	Avial	Dare	Change in Pore	Corrected	Avial	Deviator	Corrected									
No.	No. Load	Def	d	- 67	Area	Strain	Stress	Stress	G,	б	ď,	ď,	6'1/6'1	Abar	P	0	P'
	(Ibs)	(ii)			(in2)	(%)	(psi)	(isi)	(isi)	(isd)	(jsd)	(jsd)			(psi)	(psi)	(isi)
124	305.6	0.745	50.6	11.7	7.00	12.856	50.094	42.864	76.9	34.0	65.2	22.3	2.92	0.27	55.5	21.4	43.8
125	305.5		50.5	11.7	7.01	12.960	50.067	42.788	76.8	34.0	65.2	22.4	2.91	0.27	55.4	21.4	43.8
126	305.6	_	50.5	11.6	7.01	13.064	50.080	42.748	76.8	34.0	65.2	22.4	2.91	0.27	55.4	21.4	43.8
127	305.6	0.763	50.5	11.6	7.02	13.167	50.080	42.696	76.7	34.0	65.1	22.4	2.90	0.27	55.4	21.3	43.8
128	305.2	0.769	50.4	11.6	7.03	13.271	50.013	42.586	76.6	34.0	65.0	22.5	2.90	0.27	55.3	21.3	43.7
129	305.0	0.775	50.4	11.6	7.04	13.375	49.986	42.511	76.6	34.0	65.0	22.5	2.89	0.27	55.3	21.3	43.7
130	304.4	0.781	50.3	11.5	7.05	13.478	49.891	42.377	76.4	34.0	64.9	22.6	2.88	0.27	55.2	21.2	43.8
131	304.4	0.787	50.3	11.5	7.06	13.582	49.891	42.325	76.4	34.0	64.9	22.6	2.88	0.27	55.2	21.2	43.7
132	304.2		50.3	11.4	7.07	13.686	49.864	42.250	76.3	34.0	64.9	22.6	2.87	0.27	55.2	21.1	43.7
133	304.1		50.2	11.4	7.07	13.789	49.837	42.175	76.2	34.0	64.9	22.7	2.86	0.27	55.1	21.1	43.8
134	303.8		50.2	11.4	7.08	13.893	49.797	42.089	76.1	34.0	64.8	22.7	2.86	0.27	55.1	21.0	43.7
135	303.4		50.2	11.4	7.09	13.997	49.729	41.979	76.0	34.0	64.7	22.7	2.85	0.27	55.0	21.0	43.7
136	303.4		50.2	11.3	7.10	14.100	49.729	41.928	76.0	34.0	64.6	22.7	2.85	0.27	55.0	21.0	43.7
137	303.1		50.1	11.3	7.11	14.204	49.675	41.830	75.9	34.0	64.6	22.8	2.84	0.27	55.0	20.9	43.7
138	302.9	0.829	50.1	11.3	7.12	14.308	49.635	41.744	75.8	34.0	64.5	22.8	2.83	0.27	54.9	20.9	43.7
139	302.5		50.0	11.2	7.13	14.411	49.581	41.646	75.7	34.0	64.5	22.9	2.82	0.27	54.9	20.8	43.7
140	301.9		50.0	1.11	7.13	14.515	49.486	41.514	75.6	34.0	64.5	22.9	2.81	0.27	54.8	20.8	43.7
141	301.9		50.0	1.11	7.14	14.619	49.473	41.451	75.5	34.0	64.4	22.9	2.81	0.27	54.8	20.7	43.7
142	301.4	0.853	49.9	1.11	7.15	14.723	49.392	41.331	75.4	34.0	64.3	23.0	2.80	0.27	54.7	20.7	43.6
143	301.3		49.9	11.0	7.16	14.826	49.379	41.268	75.3	34.0	64.3	23.0	2.79	0.27	54.7	20.6	43.6
144	301.0		49.9	11.0	7.17	14.930	49.325	41.171	75.2	34.0	64.2	23.0	2.79	0.27	54.6	20.6	43.6
145	300.8	0.871	49.9	11.0	7.18	15.034	49.298	41.097	75.1	34.0	64.1	23.0	2.78	0.27	54.6	20.5	43.6
147	300.3		49.7	10.9	7.19	15.241	49.217	40.926	75.0	34.0	64.1	23.2	2.77	0.27	54.5	20.5	43.6
148	300.1		49.7	10.8	7.20	15.345	49.176	40.841	74.9	34.0	64.0	23.2	2.76	0.27	54.5	20.4	43.6
149	299.2		49.6	10.8	7.21	15.448	49.041	40.676	74.7	34.0	63.9	23.3	2.75	0.26	54.4	20.3	43.6
150	298.6		49.6	10.7	7.22	15.552	48.933	40.534	74.6	34.0	63.8	23.3	2.74	0.26	54.3	20.3	43.6
151	298.2		49.6	10.7	7.23	15.656	48.879	40.437	74.5	34.0	63.8	23.3	2.73	0.26	54.3	20.2	43.6
152	297.6	0.913	49.5	10.7	7.24	15.759	48.771	40.296	74.3	34.0	63.7	23.4	2.72	0.26	54.2	20.1	43.5
153	297.1		49.4	10.6	7.25	15.863	48.690	40.177	74.2	34.0	63.6	23.5	2.71	0.26	54.1	20.1	43.5
154	296.8		49.4	10.5	7.26	15.967	48.636	40.081	74.1	34.0	63.6	23.5	2.71	0.26	54.1	20.0	43.5
155	295.9	0.931	49.3	10.5	7.27	16.070	48.502	39.918	74.0	34.0	63.5	23.6	2.69	0.26	54.0	20.0	43.5
156	295.0	<u> </u>	49.3	10.5	7.27	16.174	48.353	39.743	73.8	34.0	63.3	23.6	2.69	0.26	53.9	19.9	43.4
157	294.1		49.3	10.4	7.28	16.278	48.205	39.569	73.6	34.0	63.2	23.6	2.68	0.26	53.8	19.8	43.4
158	293.6	0.949	49.3	10.4	7.29	16.381	48.110	39.440	73.5	34.0	63.1	23.6	2.67	0.26	53.8	19.7	43.4
160	292.4	_	49.2	10.4	7.31	16.589	47.921	39.182	73.2	34.0	62.9	23.7	2.65	0.26	53.6	19.6	43.3
161	292.2	_	49.2	10.3	7.32	16.692	47.894	39.110	73.2	34.0	62.8	23.7	2.65	0.26	53.6	19.6	43.3
162	292.2	0.973	49.2	10.3	7.33	16.796	47.881	39.049	73.1	34.0	62.8	23.7	2.65	0.26	53.6	19.5	43.2
163	291.9		49.1	10.3	7.34	16.900	47.840	38.966	73.0	34.0	62.7	23.8	2.64	0.26	53.5	19.5	43.2
164	291.7		49.1	10.3	7.35	17.003	47.800	38.883	72.9	34.0	62.7	23.8	2.63	0.26	53.5	19.4	43.2
165	291.6	_	49.1	10.3	7.36	17.107	47.787	38.822	72.9	34.0	62.6	23.8	2.63	0.26	53.5	19.4	43.2
166	291.3	0.997	49.1	10.2	7.37	17.211	47.733	38.728	72.8	34.0	62.6	23.8	2.63	0.26	53.4	19.4	43.2
167	291.3	1.003	49.1	10.2	7.38	17.315	47.746	38.690	72.7	34.0	62.5	23.8	2.62	0.26	53.4	19.3	43.2
168	291.1		49.1	10.2	7.38	17.418	47.706	38.607	72.7	34.0	62.4	23.8	2.62	0.26	53.3	19.3	43.1
169	291.0	1.015	49.1	10.2	7.39	17.522	47.692	38.546	72.6	34.0	62.4	23.8	2.62	0.27	53.3	19.3	43.1

Boring No_58_17.HSD


Specimen C

		Q P																						
	A STATE OF	P	P (psi)	P (psi) 53.3	P (psi) 53.3 53.3	P (psi) 53.3 53.3 53.3 53.3	P (psi) 53.3 53.3 53.3 53.3 53.3	P (psi) 53.3 53.3 53.3 53.3 53.2 53.2	P (psi) (psi	P (88) 522 522 522 522 522 522 522 522 522 52	P (psi) (psi	P (88) 532 533 535 532 533 535 532 532 533 532 532 533 532 532 533 532 533 533 532 533 533 532 533 533 532 533 533 533 532 533 533 533 533 532 533 533 533 533 533 533 532 533 533 533 533 533 533 533 533 532 532 533 533 533 533 533 533 533 533	P (88) 232 233 233 233 233 233 233 233 233 23	P (88) 222 232 232 232 232 232 232 232 232 23	P (88) 222 232 252 252 252 252 252 252 252 252	P 232 232 233 233 233 233 233 233 233 23	P 232 232 233 233 233 233 233 233 233 23	P (88) (88) (88) (88) (88) (88) (88) (88	P Signal Signal	P S33 S33	P (psi) (psi	P (psi) (23.3 (23.	P Signal (bsi) 53.3 53.3 53.3 53.3 53.3 53.2 53.2 53.2 <th>P Signal (bsi) 53.3 53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2 53.2 53.2 53.3 53.2 53.2</th>	P Signal (bsi) 53.3 53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2 53.2 53.2 53.3 53.2 53.2
	/o'3 Abar			61 0.27																				
	6'3 6'1/6'3	(bsi)		23.8 2.61	_																			
G1 G'1		(psi) (psi)	34.0 62.3																					
	وا ا	(psi) (ps	72.5		72.5	72.5	72.5 72.5 72.4	72.5 72.5 72.4 72.4	72.5 72.5 72.4 72.4 72.4	72.5 72.5 72.4 72.4 72.4 72.4	72.5 72.5 72.4 72.4 72.4 72.4	72.5 72.5 72.4 72.4 72.4 72.4 72.3	72.5 72.5 72.4 72.4 72.4 72.3 72.3 72.3	72.5 72.5 72.4 72.4 72.4 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.5 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	72.5 72.4 72.4 72.4 72.4 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3
		(psi) (psi)	27 657 28 463		-												╶╶┥┥┥╏╎╎┥┥╽╿╎	┼┽┽┽┽┼┼┼┼┼┼┼	┼┼┼┽┼┼┼┼┼┼	┼┼┼┽┼┼┼┼┼┼┼┼	┼┼┥┥┥┥┥┥┥		┥┥┫┥╡╎╏┇╡╞╏╡╡╡╡	┥┥┫┥┫╹┙╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹
	Strain	_						++++		++++		┼┼┼┼┼┼	┥┼┤┼┥┥	┥┥┥	┥┥┥	╉╋╋╋		╋╋	╋╪╋╋╋	┼┼┼┼┼┼┼┼┼┼		┼┼┼┼┼┼┼┼┼┼┼	┼┼┼┼┼┼┼┼┼┼┼	
	ure Area		2 7.40	2 7.41																				
	-	(psi) (psi)	49.1 10.2	49.0 10.2		49.1 10.2																		
	Deformation Pressure	(in)	1.021	1.027	1.033		1.039	1.039 1.045	1.039 1.045 1.051	1.039 1.045 1.051 1.057	1.039 1.045 1.051 1.057 1.063	1.039 1.045 1.051 1.057 1.063 1.069	1.039 1.045 1.051 1.057 1.057 1.063 1.069 1.075	1.039 1.045 1.051 1.057 1.053 1.063 1.069 1.075 1.081	1.039 1.045 1.051 1.057 1.053 1.063 1.063 1.069 1.075 1.081	1.039 1.045 1.051 1.057 1.057 1.063 1.069 1.075 1.087 1.093	1.039 1.045 1.045 1.057 1.057 1.063 1.069 1.075 1.087 1.093 1.105	1.039 1.045 1.045 1.057 1.057 1.063 1.069 1.075 1.087 1.093 1.105 1.117	1.039 1.045 1.045 1.057 1.063 1.063 1.069 1.075 1.087 1.087 1.093 1.105 1.117 1.123	1.039 1.045 1.045 1.057 1.063 1.063 1.065 1.069 1.075 1.087 1.093 1.105 1.117 1.123 1.129	1.039 1.045 1.051 1.057 1.063 1.063 1.065 1.069 1.075 1.093 1.093 1.105 1.117 1.129 1.123 1.135	1.039 1.045 1.051 1.057 1.063 1.063 1.065 1.065 1.065 1.075 1.075 1.075 1.075 1.093 1.093 1.105 1.117 1.129 1.129 1.129 1.135 1.141	1.039 1.045 1.051 1.057 1.063 1.063 1.069 1.075 1.087 1.087 1.093 1.105 1.117 1.129 1.129 1.129 1.135 1.147	1.039 1.045 1.051 1.057 1.063 1.063 1.065 1.069 1.075 1.087 1.087 1.093 1.105 1.117 1.129 1.129 1.129 1.123 1.123 1.147 1.147 1.153
TOTAL OF STREAMAR		-		-			+	+													╉┾╉┼┊╏╏┥┥	╉┾╉┾╅┟┨┟╏┟╏┟┥		╉┿╆┼┼┟┟┼┟┟┟┟┟┟┝┝

Florence & Hutcheson



CONSULTING ENGINEERS

	Before	After	Liquid Limits:	26	Test Date:	11/08/10
Moisture (%):	12.59	19.34	Plastic Limits:	20		
Dry Density (pcf):	97.56	104.24	Plasticity Index (%):	6		
Saturation (%):	48.03	87.46				
Void Ratio:	0.6934	0.5927	Specific Gravity:	2.647	Measured	
Soil Description:	Light Gray &	Reddish Oran	nge Silty, Clayey Sand			
Project Number:	38001-1684-0	438001-1684	Depth: 25.0' to 25.3	8' Remarks:		
Sample Number:	ST-2	Borii	ng Number: 56			
Project: Solar Farm Information & Welcome Center Site Design						
Client:						
Location: Haywood, T	N					

	Before	After	Liquid Limits:	26	Test Date:	11/08/10
Moisture (%):	12.59	19.34	Plastic Limits:	20		
Dry Density (pcf):	97.56	104.24	Plasticity Index (%):	6		
Saturation (%):	48.03	87.46				
Void Ratio:	0.6934	0.5927	Specific Gravity:	2.647	Measured	
Soil Description:	Light Gray &	Reddish Orar	ige Silty, Clayey Sand			
Project Number:	38001-1684-0	438001-1684	Depth: 25.0' to 25.3	B' Remarks:		
Sample Number:	ST-2	Borii	ng Number: 56			
Project: So	lar Farm Information & V	Velcome Cent	ter Site Design			
Client:						
Location: Ha	iywood, TN					

CONSULTING ENGINEERS

Consolidation Test Results

Summary

 Project:
 Solar Farm Information & Welcome Center Site Design

 Location:
 Haywood, TN

 Job Number:
 10217

Sample Number:ST-2Boring Number:56Depth:25.0' to

Sample Type:

56 25.0' to 25.3' Undisturbed Sample Description: Light Gray & Reddish Orange Silty, Clayey Sand Remarks:

Test Number: Test Date: 11/08/10

Project Number: 38001-1684-0438001-1684-04

Index	Load Sequence (tsf)	Cummulativ e Change in Height (in)	Specimen Height (in)	Height of Void (in)	Vertical Strain (%)	Void Ratio	t90 Fitting Time (min)	t50 Fitting Time (min)	190 Cv (ft2/year)	(50 Cv (ft2/year)
0	0.000	0.0000	0.9995	0,4084	0.00	0.6908	0.000	0.000	0.000	0.000
1	0.125	-0.0004	0.9999	0.4088	-0.04	0.6915	0.373	* 0.2073	2073.716	866.988
2	0.250	0.0020	0.9975	0,4064	0.20	0.6874	3.512	* 1.9512	219.226	91.669
3	0.500	0.0064	0.9931	0.4020	0.64	0.6800	2.606	* 1.4477	292.871	122.463
4	1.000	0.0124	0.9871	0.3960	1.24	0.6698	3.813	* 2.1183	197.738	82.686
5	2.000	0.0193	0.9802	0.3891	1.93	0.6582	4.484	* 2.4913	165.792	69.327
6	1.000	0.0187	0.9808	0.3897	1.87	0.6592	0.000	0.000	0.000	0.000
7	0.500	0.0171	0.9824	0.3913	1.71	0.6619	0.000	0.000	0.000	0.000
8	0.250	0.0150	0.9845	0.3934	1.50	0.6655	0.000	0.000	0.000	0.000
9	0.125	0.0123	0.9872	0.3961	1.23	0.6700	0.000	0.000	0.000	0.000
10	0.250	0.0132	0.9863	0.3952	1.32	0.6685	1.000	* 0.5556	752.743	314.742
11	0.500	0.0150	0.9845	0.3934	1.50	0.6655	1.927	* 1.0706	389,200	162.743
12	1.000	0.0173	0.9822	0.3911	1.73	0.6616	3.106	* 1.7254	240.358	100.510
13	2.000	0.0207	0.9788	0.3877	2.07	0.6558	2.125	* 1.1806	348.854	145.876
14	4.000	0.0272	0.9723	0.3812	2.72	0.6448	2.512	* 1.3953	291.267	121.796
15	8.000	0.0382	0.9613	0.3702	3.82	0.6262	2.679	* 1.4880	266.969	111.639
16	16.000	0.0542	0.9453	0.3542	5.42	0.5991	3.106	* 1.7254	222.645	93.100
17	32.000	0.0778	0.9217	0.3306	7.78	0.5592	3.006	* 1.6700	218.684	91.445
18	16.000	0.0765	0,9230	0.3319	7.65	0.5614	0.000	0.000	0.000	0.000
10	8.000	0.0749	0.9246	0.3335	7.49	0.5641	0.000	0.000	0.000	0.000
20	4,000	0.0730	0.9265	0.3354	7.30	0.5673	0.000	0.000	0.000	0.000
20	2.000	0.0713	0.9282	0.3371	7.13	0.5702	0.000	0.000	0.000	0.000
22	1.000	0.0692	0.9303	0.3392	6.92	0.5738	0.000	0.000	0.000	0.000
23	0.500	0.0667	0.9328	0.3417	6.67	0.5780	0.000	0.000	0.000	0.000
24	0.250	0.0637	0.9358	0.3447	6.37	0.5831	0.000	0.000	0.000	0.000
25	0.125	0.0594	0.9401	0.3490	5,94	0.5903	0.000	0.000	0.000	0.000

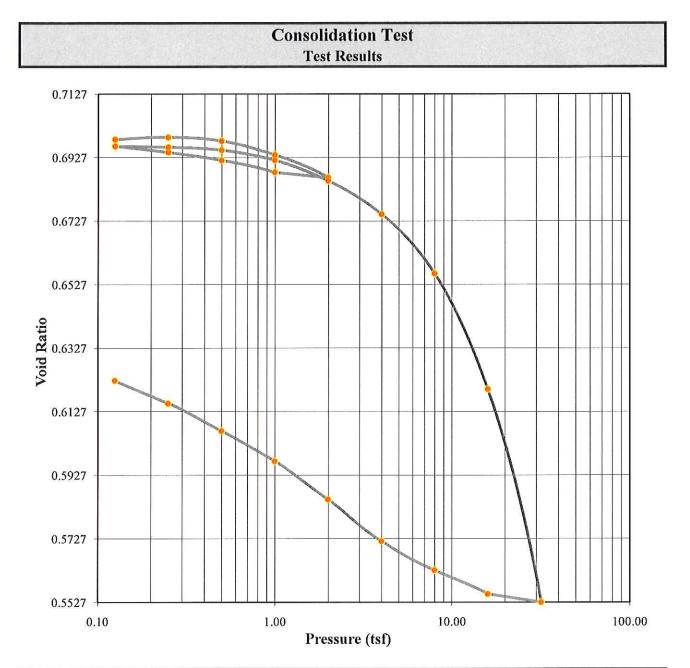
Tested By: (1 Ligon

Checked By: OLC

Florence & Hutcheson

CONSULTING ENGINEERS

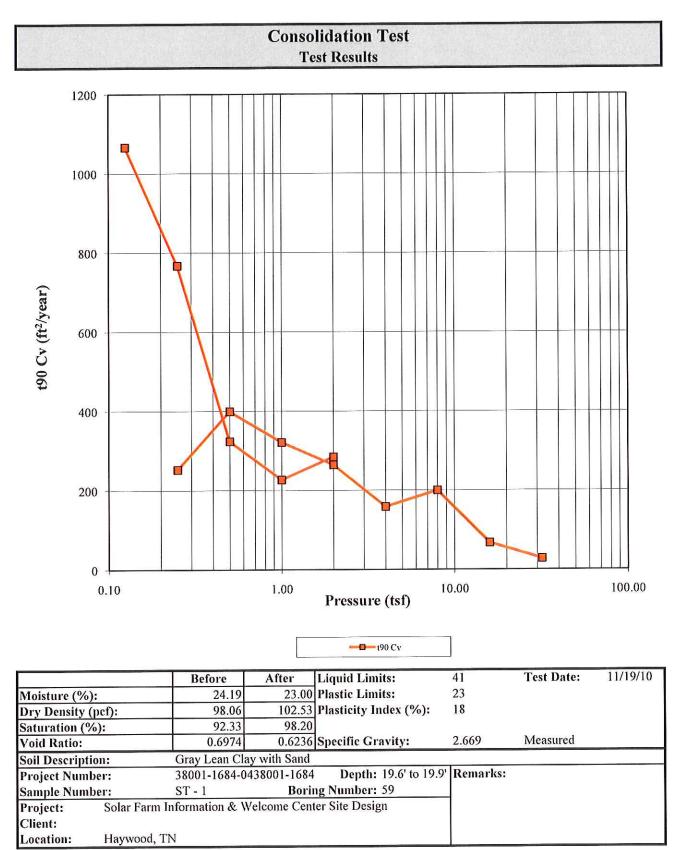
Consolidation Test Consolidation Specimen Information


and the second sec		elcome Center Site Desi	gn Project	Number: 8001-1684-043800)1-1684-04
Location: Haywood, ' Job Number:	10217			Test Date:	11/08/10
Sample Number: Boring Number: Depth: Sample Type:	ST-2 56 25.0' to 25.3' Undisturbed	Sample Des Light Gray & Remarks:	s contration and second second	Silty, Clayey Sand	
Test Number: Liquid Limit: Plastic Limit: Specific Gravity:	20.0000 Pl	nitial Void Ratio: lasticity Index (%): Veight of Ring (g):	0.6934 6.0000 109.2900	Initial Height (in): Initial Diameter (in):	0.9995 2.4978

Parameters	Parameters Initial Specimen	
Moist Weight + Container (g)	301.24	225.03
Dry Soil + Container (g)	275.70	200.69
Weight of Container (g)	72.88	74.85
Moisture Content (%)	12.59	19.34
Void Ratio	0.6934	0.5927
Saturation (%)	48.03	87.46
Dry Density (pcf)	97.56	104.24

Tested By: A. Higor

Checked By: DLC



	Before	After	Liquid Limits:	41	Test Date:	11/19/10
Moisture (%):	24.19	23.00	Plastic Limits:	23		
Dry Density (pcf):	98.06	102.53	Plasticity Index (%):	18		
Saturation (%):	92.33	98.20				
Void Ratio:	0.6974	0.6236	Specific Gravity:	2.669	Measured	
Soil Description: Gray Lean Clay with Sand						
Project Number:	38001-1684-0	438001-1684	Depth: 19.6' to 19.9	' Remarks:		
Sample Number:	ST - 1	Borin	ng Number: 59			
Project: Solar Farm I	Project: Solar Farm Information & Welcome Center Site Design					
Client:						
Location: Haywood, T	N					

Florence & Hutcheson

CONSULTING ENGINEERS

CONSULTING ENGINEERS

Consolidation Test Results

Summary

Solar Farm Information & Welcome Center Site Design Project: Location: Haywood, TN 10217 Job Number:

Project Number: 38001-1684-0438001-1684

Sample Number:	ST - 1
Boring Number:	59
Depth:	19.6' to 19.9'
Sample Type:	Undisturbed

Remarks:

Sample Description: Gray Lean Clay with Sand

Test Number:	
Test Date:	11/19/10

Index	Load Sequence (tsf)	Cummulativ e Change in Height (in)	Specimen Height (in)	Height of Void (in)	Vertical Strain (%)	Void Ratio	t90 Fitting Time (min)	t50 Fitting Time (min)	190 Cv (ft2/year)	(50 Cv (ft2/year)
0	0,000	0,0000	0.9978	0.4095	0.00	0.6962	0.000	0.000	0.000	0.000
1	0.125	-0.0013	0.9991	0.4108	-0.13	0.6984	0.724	* 0.4025	1066,207	445.811
2	0.250	-0.0017	0.9995	0.4112	-0.17	0.6991	1.008	* 0.5598	767,164	320.798
3	0.500	-0.0010	0.9988	0.4105	-0.10	0.6979	2.384	* 1.3246	323,762	135.385
4	1.000	0.0016	0.9962	0.4079	0.16	0.6935	3.389	* 1.8829	226,575	94.747
5	2.000	0.0058	0.9920	0.4037	0.58	0.6863	2.678	* 1.4880	284,298	118.883
6	1.000	0.0048	0.9930	0.4047	0.48	0.6880	0.000	0.000	0.000	0.000
7	0.500	0.0026	0.9952	0.4069	0.26	0.6918	0.000	0.000	0.000	0.000
8	0.250	0.0011	0.9967	0.4084	0.11	0.6943	0.000	0.000	0.000	0.000
9	0.125	0.0000	0.9978	0.4095	0.00	0.6962	0.000	0.000	0.000	0.000
10	0.250	0.0001	0.9977	0.4094	0.01	0.6960	3.059	* 1.6995	251.790	105.288
11	0.500	0.0007	0.9971	0.4088	0.07	0.6950	1.927	* 1.0706	399.226	166.936
12	1.000	0.0026	0.9952	0.4069	0.26	0.6918	2.384	* 1.3246	321.432	134.411
13	2.000	0.0064	0.9914	0,4031	0.64	0.6853	2.883	* 1.6014	263.852	110.331
14	4.000	0.0126	0.9852	0.3969	1.26	0.6748	4.737	* 2.6315	158,565	66.305
15	8.000	0.0236	0.9742	0.3859	2.37	0.6561	3.677	* 2.0430	199.702	83.508
16	16.000	0.0450	0.9528	0.3645	4.51	0.6197	10.474	* 5.8188	67.069	28.046
17	32,000	0.0844	0.9134	0.3251	8.46	0.5527	23.150	* 12.8610	27.887	11.661
18	16,000	0.0829	0.9149	0.3266	8.31	0.5553	0.000	0.000	0.000	0.000
19	8.000	0.0785	0.9193	0.3310	7.87	0.5627	0.000	0.000	0.000	0.000
20	4.000	0.0731	0.9247	0.3364	7.33	0.5719	0.000	0.000	0.000	0.000
21	2,000	0.0654	0.9324	0.3441	6.55	0.5850	0.000	0.000	0.000	0.000
22	1.000	0.0583	0.9395	0.3512	5.84	0.5971	0.000	0.000	0.000	0.000
23	0.500	0.0527	0.9451	0.3568	5.28	0.6066	0.000	0.000	0.000	0.000
24	0.250	0.0476	0.9502	0.3619	4.77	0.6153	0.000	0.000	0.000	0.000
25	0,125	0.0434	0.9544	0.3661	4.35	0.6224	0.000	0.000	0.000	0.000

Tested By: A. Lycon

Checked By: bLC

Florence & Hutcheson

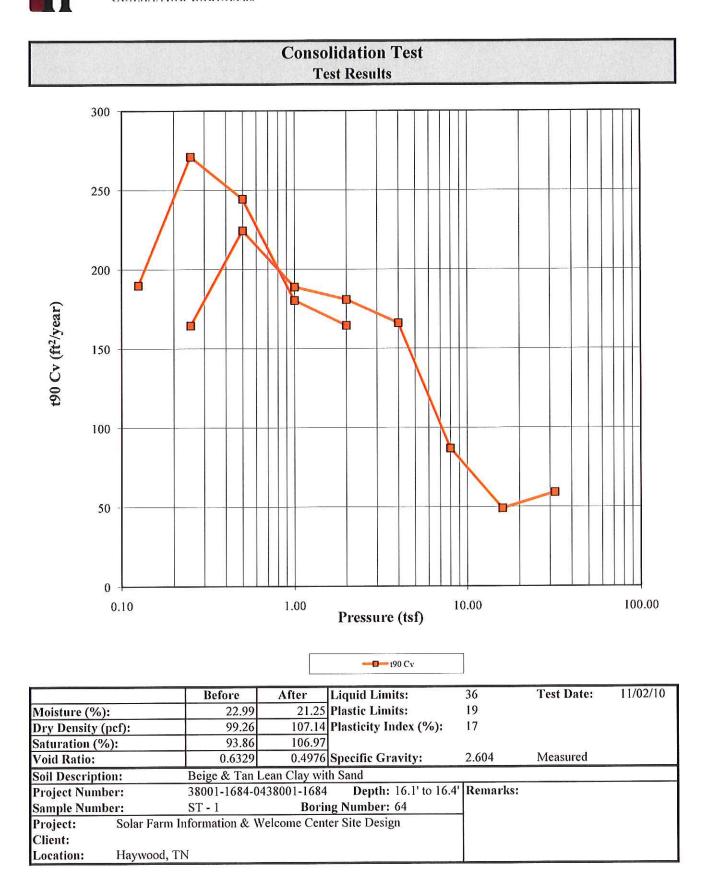
CONSULTING ENGINEERS

Consolidation Test Consolidation Specimen Information

Project: Solar Farm Location: Haywood,		Welcome Center Site Des	ign Project	Number: 8001-1684-04380	01-1684-04
Job Number:	10217			Test Date:	11/19/10
Sample Number: Boring Number: Depth: Sample Type:	ST - 1 59 19.6' to 19.9 Undisturbed	Remarks:	scription: Clay with Sand		
Test Number: Liquid Limit: Plastic Limit: Specific Gravity:	41.0000 23.0000 2.6690 Measured	Initial Void Ratio: Plasticity Index (%): Weight of Ring (g):	0.6974 18.0000 109.2900	Initial Height (in): Initial Diameter (in):	0.9978 2.4978

Parameters	Initial Specimen	Final Specimen
Moist Weight + Container (g)	378.69	228.06
Dry Soil + Container (g)	319.11	199.16
Weight of Container (g)	72.84	73.52
Moisture Content (%)	24.19	23.00
Void Ratio	0.6974	0.6236
Saturation (%)	92.33	98.20
Dry Density (pcf)	98.06	102.53

Tested By: A. Liger


Checked By: DLC

Florence & Hutcheson Consulting Engineers

	Before	After	Liquid Limits:	36	Test Date:	11/02/10
Moisture (%):	22.99	21.25	Plastic Limits:	19		
Dry Density (pcf):	99.26	107.14	Plasticity Index (%):	17		
Saturation (%):	93.86	106.97				
Void Ratio:	0.6329	0.4976	Specific Gravity:	2.604	Measured	
Soil Description:	Beige & Tan L	ean Clay wit	th Sand			
Project Number:	38001-1684-04	38001-1684	Depth: 16.1' to 16.4	4' Remarks:		
Sample Number:	ST - 1	Bori	ng Number: 64			
Project: Solar Farm	Information & W	elcome Cent	er Site Design			
Client:						
Location: Haywood,	ſN					

Florence & Hutcheson

CONSULTING ENGINEERS

Consolidation Test Results

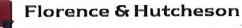
Summary

Project Number: 38001-1684-0438001-1684-04

Solar Farm Information & Welcome Center Site Design **Project:** Location: Haywood, TN Job Number: 10217

Sample Number: ST - 1 **Boring Number:** 64 Depth: Sample Type:

16.1' to 16.4' Undisturbed


Sample Description: Beige & Tan Lean Clay with Sand **Remarks:**

Test Number: 11/02/10 **Test Date:**

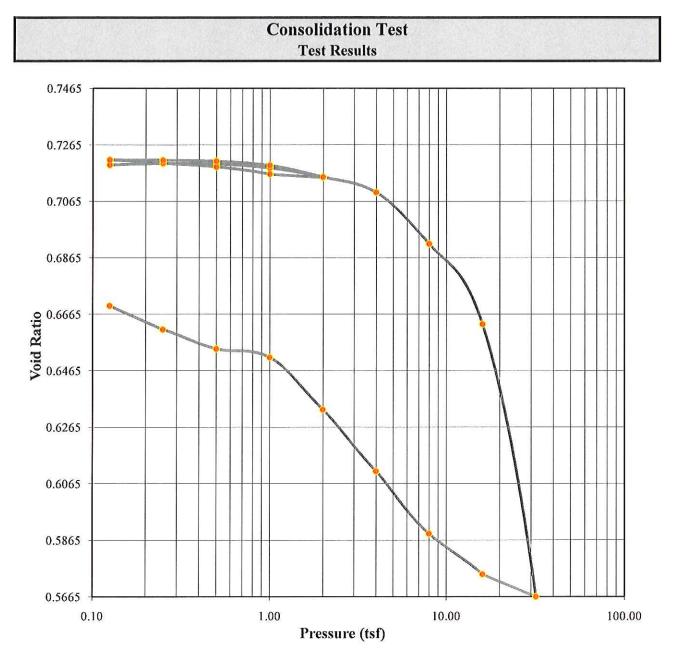
Index	Load Sequence (tsf)	Cummulativ e Change in Height (in)	Specimen Height (in)	Height of Void (in)	Vertical Strain (%)	Void Ratio	t90 Fitting Time (min)	t50 Fitting Time (min)	190 Cv (ft2/year)	(f50 Cv (ft2/year)
0	0.000	0.0000	0.9923	0.3853	0.00	0.6349	0.000	0.000	0.000	0.000
1	0.125	-0.0002	0.9925	0.3855	-0.02	0.6352	4.015	* 2.2305	189.849	79.389
2	0.250	0.0014	0.9909	0.3839	0.14	0.6326	2.804	* 1.5579	270.933	113.297
3	0.500	0.0062	0.9861	0.3791	0.62	0.6247	3.079	* 1.7106	244.377	102.186
4	1.000	0.0141	0.9782	0.3712	1.42	0.6117	4.106	* 2.2810	180.339	75.410
5	2.000	0.0265	0.9658	0.3588	2.67	0.5912	4.387	* 2.4373	164.518	68.796
6	1.000	0.0245	0.9678	0.3608	2.47	0.5945	0.000	0.000	0.000	0.000
7	0,500	0.0212	0.9711	0.3641	2.14	0.6000	0.000	0.000	0.000	0.000
8	0.250	0.0167	0.9756	0.3686	1.68	0.6074	0.000	0.000	0.000	0.000
9	0.125	0.0131	0.9792	0.3722	1.32	0.6133	0.000	0.000	0.000	0.000
10	0.250	0.0137	0.9786	0.3716	1.38	0.6123	4.508	* 2.5044	164.384	68.739
11	0.500	0.0159	0.9764	0.3694	1.60	0.6087	3.287	* 1.8262	224.423	93.844
12	1.000	0.0208	0.9715	0.3645	2.10	0.6006	3.869	* 2.1496	188.750	78.927
13	2.000	0.0290	0.9633	0.3563	2.92	0.5871	3.972	* 2.2066	180.785	75.596
14	4.000	0.0425	0.9498	0.3428	4.28	0.5649	4.205	* 2.3359	166.022	69.424
15	8.000	0.0625	0.9298	0.3228	6.30	0.5319	7.699	* 4.2773	86.890	36.334
16	16.000	0.0966	0.8957	0.2887	9.73	0.4757	12.676	* 7.0420	48.976	20.480
17	32.000	0.1393	0.8530	0.2460	14.04	0.4054	9.538	* 5.2991	59.027	24.683
18	16.000	0.1371	0.8552	0.2482	13.82	0.4090	0.000	0.000	0.000	0.000
19	8.000	0.1330	0.8593	0.2523	13.40	0.4158	0.000	0.000	0.000	0.000
20	4.000	0.1269	0.8654	0.2584	12.79	0.4258	0.000	0.000	0.000	0.000
21	2.000	0.1206	0.8717	0.2647	12.15	0.4362	0.000	0.000	0.000	0.000
22	1.000	0.1083	0.8840	0.2770	10.91	0.4565	0.000	0.000	0.000	0.000
23	0.500	0.0963	0.8960	0.2890	9.70	0.4762	0.000	0.000	0.000	0.000
24	0.250	0.0850	0.9073	0.3003	8.57	0.4948	0.000	0.000	0.000	0.000
25	0.125	0.0822	0.9101	0.3031	8.28	0.4995	0.000	0.000	0.000	0.000

Tested By: A. Logon

Checked By: OLC

CONSULTING ENGINEERS

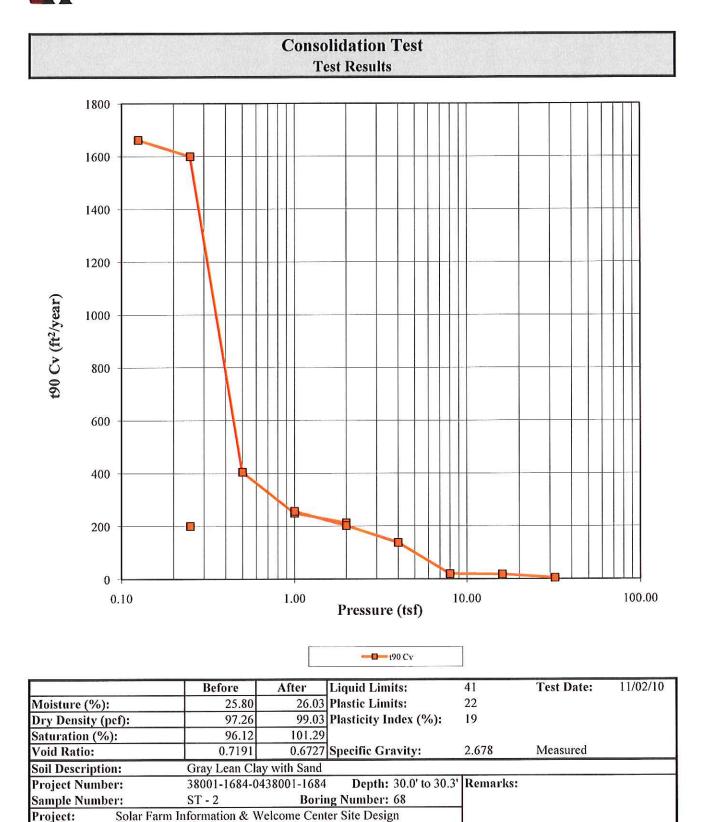
Consolidation Test Consolidation Specimen Information


Project: Solar Farm Location: Haywood,	n Information & Weld TN	come Center Site Des	ign Project	t Number: 8001-1684-04380	01-1684-04
Job Number:	10217			Test Date:	11/02/10
Sample Number: Boring Number: Depth: Sample Type:	ST - 1 64 16.1' to 16.4' Undisturbed	Sample Des Beige & Ta Remarks:	scription: n Lean Clay with	Sand	
Test Number: Liquid Limit: Plastic Limit: Specific Gravity:	19.0000 Pla	tial Void Ratio: sticity Index (%): ight of Ring (g):	0.6329 17.0000 109.2900	Initial Height (in): Initial Diameter (in):	0.9923 2.4978

Parameters	Initial Specimen	Final Specimen
Moist Weight + Container (g)	287.63	224.72
Dry Soil + Container (g)	247.44	198.10
Weight of Container (g)	72.65	72.85
Moisture Content (%)	22.99	21.25
Void Ratio	0.6329	0.4976
Saturation (%)	93.86	106.97
Dry Density (pcf)	99.26	107.14

Tested By: A. Kogor

Checked By: PLC



	Before	After	Liquid Limits:	41	Test Date:	11/02/10
Moisture (%):	25.80	26.03	Plastic Limits:	22		
Dry Density (pcf):	97.26	99.03	Plasticity Index (%):	19		
Saturation (%):	96.12	101.29				
Void Ratio:	0.7191	0.6727	Specific Gravity:	2.678	Measured	
Soil Description:	Gray Lean Clay	y with Sand				
Project Number:	38001-1684-04	38001-1684	Depth: 30.0' to 30.1	B' Remarks:		
Sample Number:	ST - 2	Borii	ng Number: 68			
Project: Solar Farm I	nformation & W	elcome Cent	ter Site Design			
Client:						
Location: Haywood, T	N					

Client: Location:

Haywood, TN

Sample Number: ST - 2

68

30.0' to 30.3'

Undisturbed

Boring Number:

Sample Type:

Depth:

CONSULTING ENGINEERS

Consolidation Test Results

Summary

Sample Description: Gray Lean Clay with Sand

Remarks:

 Project:
 Solar Farm Information & Welcome Center Site Design

 Location:
 Haywood, TN

 Job Number:
 10217

Project Number: 38001-1684-0438001-1684-04

Test Number: Test Date: 11/02/10

Index	Load Sequence (tsf)	Cummulativ e Change in Height (in)	Specimen Height (in)	Height of Void (in)	Vertical Strain (%)	Void Ratio	t90 Fitting Time (min)	t50 Fitting Time (min)	190 Cv (ft2/year)	t50 Cv (ft2/year)
0	0.000	0,0000	1.0015	0.4178	0.00	0.7158	0.000	0.000	0.000	0.000
1	0,125	-0.0021	1.0036	0.4199	-0.21	0.7194	0.469	* 0.2606	1661.388	694.778
2	0.250	-0.0024	1.0039	0.4202	-0.24	0.7199	0.488	* 0.2709	1599.029	668.761
3	0.500	-0.0023	1.0038	0.4201	-0.23	0.7197	1.927	* 1.0706	404.609	169.187
4	1.000	-0.0015	1.0030	0.4193	-0.15	0.7183	3.125	* 1.7362	249.094	104.160
5	2,000	0.0005	1.0010	0.4173	0.05	0.7149	3.649	* 2.0274	212.467	88.844
6	1.000	-0.0002	1.0017	0.4180	-0.02	0.7161	0.000	0.000	0.000	0.000
7	0.500	-0.0017	1.0032	0.4195	-0.17	0.7187	0.000	0.000	0.000	0.000
8	0.250	-0.0025	1.0040	0.4203	-0.25	0.7200	0.000	0.000	0.000	0.000
9	0,125	-0.0032	1.0047	0.4210	-0.32	0.7212	0.000	0.000	0.000	0.000
10	0,250	-0.0031	1.0046	0.4209	-0.31	0.7211	3.908	* 2.1713	199.812	83.554
11	0,500	-0.0029	1.0044	0.4207	-0.29	0.7207	0.000	0.000	0.000	0.000
12	1.000	-0.0020	1.0035	0.4198	-0.20	0.7192	3.043	* 1.6904	256.098	107.089
13	2,000	0.0004	1.0011	0.4174	0.04	0.7151	3.845	* 2.1363	201.678	84.332
14	4.000	0.0036	0.9979	0.4142	0.36	0.7096	5.582	* 3.1011	138.042	57.724
15	8,000	0.0142	0.9873	0.4036	1.42	0.6914	39.746	* 22.0810	18.977	7.936
16	16,000	0.0308	0.9707	0.3870	3.08	0.6630	41.798	* 23.2212	17.444	7.294
17	32.000	0.0871	0.9144	0.3307	8.70	0.5665	156.904	* 87.1691	4.124	1.724
18	16.000	0.0825	0.9190	0.3353	8.24	0.5744	0.000	0.000	0.000	0.000
19	8.000	0.0741	0.9274	0.3437	7.40	0.5888	0.000	0.000	0.000	0.000
20	4.000	0.0612	0.9403	0.3566	6.11	0.6109	0.000	0.000	0.000	0.000
21	2.000	0.0485	0.9530	0.3693	4.84	0.6327	0.000	0.000	0.000	0.000
22	1.000	0.0377	0.9638	0.3801	3.76	0.6512	0.000	0.000	0.000	0.000
23	0.500	0.0359	0.9656	0.3819	3.58	0.6543	0.000	0.000	0.000	0.000
24	0.250	0.0319	0.9696	0.3859	3.19	0.6611	0.000	0.000	0.000	0.000
25	0.125	0.0270	0.9745	0.3908	2.70	0.6695	0.000	0.000	0.000	0.000

Tested By: A. Rigor

Checked By: DLC

Florence & Hutcheson

CONSULTING ENGINEERS

Consolidation Test Consolidation Specimen Information

and the second		Welcome Center Site Des	ign Project	Number: 8001-1684-04380	01-1684-04
Location: Haywood, 7 Job Number:	10217			Test Date:	11/02/10
Sample Number: Boring Number: Depth: Sample Type:	ST - 2 68 30.0' to 30.3 Undisturbed	Remarks:	scription: Clay with Sand		
Test Number: Liquid Limit: Plastic Limit: Specific Gravity:	41.0000 22.0000 2.6780 Measured	Initial Void Ratio: Plasticity Index (%): Weight of Ring (g):	0.7191 19.0000 110.8600	Initial Height (in): Initial Diameter (in):	1.0015 2.4993

Parameters	Initial Specimen	Final Specimen
Moist Weight + Container (g)	252.34	229.45
Dry Soil + Container (g)	215.69	197.18
Weight of Container (g)	73.63	73.19
Moisture Content (%)	25.80	26.03
Void Ratio	0.7191	0.6727
Saturation (%)	96.12	101.29
Dry Density (pcf)	97.26	99.03

Tested By: A. Lizon

Checked By: PLC

Appendix VI Plan, Profile, & Cross Section Sheets

UESIGN DIVISIC

S

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION BUREAU OF PLANNING AND DEVELOPMENT

GEOTECHNICAL OPERATIONS SECTION

PROPOSED SOLAR FARM INFORMATION AND WELCOME CENTER

HAYWOOD COUNTY, TENNESSEE

	SOIL LEGEND AND AASHTO CLASSIFICATION														
GENERAL CLASS.		GF	ANULA	JLAR MATERIALS				SILT-C	CLAY MA	TERIAL	S	ORGAN	NIC MATE	RIALS	
CLASS.	CLASS.			SSING	#200)			(> 35%	PASSIN	G #200)					
GROUP CLASS.	А	-1	A-3		A	-2		A-4	A-5	A-6	A-7	A-1,A-2 A-3	A-4,A-5 A-6,A-7		
ULASS.	A-1-a			A-2-4	A-2-5	A-2-6	A-2-7				A-7-5 A-7-6	A-3	A-6,A-7		
SYMBOL	20000000	00000000										}			
% PASSING												GRANULAR	SILT-		
#10	50 MX	50.104	E1 101		:							SOILS	CLAY	MUCK, PEAT	
#40 #200	30 MX	50 MX	51 MN 10 MX	35 MX	35 MX	35 MX	35 MX	36 MN	36 MN	36 MN	36 MN		50125		
(PASSING #40) LL		I		40 MX	41 MN	40 MX	41 MN	40 MX	41 MN	40 MX	41 MN				
PI	6	МХ	N.P.	10 MX	10 MX	11 MN	11 MN	10 MX	10 MX	11 MN	11 MN	LITTL		HI GHL Y	
GROUP INDEX	C)	0	()	4	МХ	8 MX	12 MX	16 MX	NO MX		NTS OF	ORGANI C SOI LS	
USUAL TYPES OF MAJOR MATERIALS	STONE GRAV SAN	EL &	F I NE SAND			CLAYE ND SAN		SI L SOI		CLAY SOIL		ORGANIC 501 MATTER			
			• • • • • • • • • • • • • • • • • • • •	* PI (DF A-7-	-5 < (Li	-30); P	OF A-7	'-6 > (LL	-30)					
					ADD	AO IT I (CK SYN	IBOLS						
SYMBOL															
	SHA	ALE	LIMES	TONE	SILTS	TONE	WEATH SHA		EXISTIN ROADWAY F		RANDOM BACKFILL	WEATHE LIMEST		DED SOLID ROCK	

Survey & Design

GEOTECHNICAL CONSULTANT <u>FLORENCE & HUTCHESON, INC.</u> ENGINEER <u>J. SHANNON PROVANCE</u> P.E. NO. <u>38001-1684-04</u> GEOTECHNICAL ENGINEERING FILE NO.

	TYPE	YEAR	PROJECT NO.	SHEET NO.
E	CONST.		38001-1684-04	
ſ				
ſ				

AI	Activity Index
LI	Liquidity Index
S+C	Silt + Clay (% finer than No.200 Sieve)
0	Rockline Soundings
•	Disturbed Sample Boring
0	Undisturbed Sample Boring
\odot	Undisturbed Sample Boring & Rock Core
•	Rock Core
-{}-	Slope Inclinometer Installation typical applications:
\bigtriangleup	Cone Penetration Test Boring
OW	Observation Well
→	Approximate Footing Elevation
. ▼ (Date)	Water Elevation
VS (psf)	Field Vane Shear Strength
Ν	Penetration Resistance
Qu (psf)	Unconfined Compressive Strength
UU (psf)	Unconsolidated Undrained TriaxialStrength
w%	Moisture Content
ROD REC	Rock Quality Designation
	Core Recovery
Ø d	Angle of InternalFriction (TotalStress)
Ø	Angle of InternalFriction (Effective Stress) Cohesion (TotalStress)
c (psf) c (psf)	Cohesion (Effective Stress)
す(pcf) R	TotalUnit Weight Refusal
NR	RefusalNot Encountered
(HA)	Hand Auger

GEOTECHNICAL NOTES

- 1. The natural moisture contents of the overburden soils at the time of drilling are typically near or above the upper limit of the 95% compaction moisture range. Drying, handling, and manipulation of the soils is likely to be required in order to achieve the proper moisture content required to satisfy the compaction requirements.
- 2. Installation of erosion control matting and establishment of vegetation shall be conducted as soon as practical to prevent erosion of the reconfigured side-hill slope, bridge abutment slopes and construction staging areas.
- 3. 3 feet of undercut along with backfill consisting of Select Granular Material shall be placed beneath the embankment footprint from Station 49+00 to Station 53+00.
- 4. Compaction of backfill materials shall achieve 95% of maximum dry density at optimum moisture content +/- 2% in accordance with ASTM D 698 or AASHTO T 99, standard proctor. Compaction shall be verified with field density tests performed by qualified soil technicians.
- The following station intervals shall reauire the use of embankment benching to construct the proposed embankments. Embankment 5. benching shall be in accordance with Section 205 of the Standard Specifications for Road and Bridge Construction.
 - I-40 Widening (Ramp A Acceleration Lane) Station 66+50 to Station 74+50
 - I-40 Widening (Ramp B Deceleration Lane) Station 99+50 to Station 102+50
 - I-40 Widening (Ramp C Deceleration Lane) Station 68+47 to Station 74+50
 - I-40 Widening (Ramp D Acceleration Lane) Station 99+13.12 to Station 110+00
- 6. All drilled shafts to be constructed per the current version of TDOT Special Provisions 625 "Special Provision Regarding Drilled Shaft Specifications."
- 7. Embankment sections near the proposed abutments shallbe constructed first. or as soon as practical in the construction sequence. A waiting period ranging from 30 to 60 days is required prior to paving operations and pile driving operations in these areas to reduce the effects of settlement on pavement and to reduce likelihood of dragdown forces on the piles. The indicated waiting period and initial fill construction shall be utilized within the following approximate limits, at the direction of the Engineer.

Ramp A Station 20+00.00 to Station 25+00.00 Ramp B Station 37+50.00 to Station 39+32.89 Ramp C Station 49+50.00 to Station 53+11.07 Ramp D Station 60+00.00 to Station 62+00.00 Access Road Station 8+27.62 to Begin Bridge Access Road Station End Bridge to Station 13+50.00

\$\$\$\$CYTIME\$\$\$\$\$\$ \$\$\$\$DGNSPEC\$\$\$\$\$\$\$\$\$\$\$\$\$\$

DIVISI

DESIGN

NO.

TYPE	YEAR	PROJECT NO.	SHEET NO.
CONST.		38001-1684-04	

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION BUREAU OF PLANNING & DEVELOPMENT

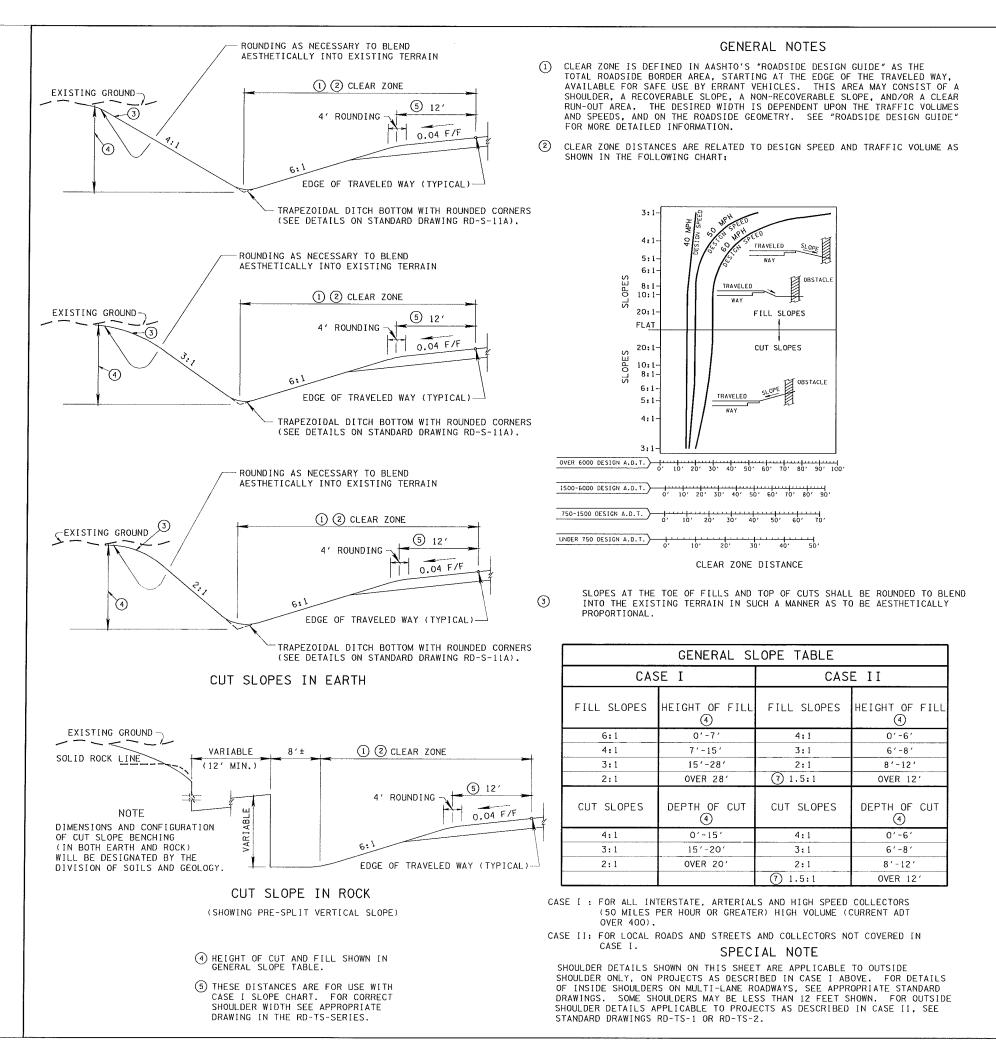
Sample No.	Description	Maximum Density, (pcf)	Moisture Range, (%)	L.L.	P.I.	AASHTO Class.	USCS Class	C.B.R.
1	Brownish Tan Lean Clay	105.0	12.7 - 18.9	35	13	A-6 (14)	CL	7
2	Dark Brown Lean Clay	108.0	11.5 - 18.1	31	11	A-6(10)	CL	6
3	Reddish Brown Lean Clay with Sand	110.0	12.0 - 19.8	30	9	A-4(6)	CL	3
4	Brownish Red Clayey Sand	117.0	10.6 - 15.7	25	10	A-2-4(0)	SC	8
5	Gray Sandy Lean Clay	107.0	8.5 - 20.7	31	15	A-6(8)	CL	2
6	Gray Sandy Lean Clay	110.0	2.1 - 19.5	30	15	A-6(7)	CL	3
7	Orange Silty Sand	112.0	7.1 - 14.4	NP	NP	A2-4(0)	SM	21
8	Light Gray & Tan Sandy Lean Clay	-	-	34	14	A-6(6)	CL	-
9	Beige & Yellowish Orange Lean Clay with Sand		-	42	22	A-7-6(17)	CL	-
10	Gray Lean Clay with Sand	-	-	29	14	A~6(8)	CL	
11	Reddish Orange Silty Sand	-	-	NP	NP	A-2-4(0)	SM	-
12	Reddish Orange Poorly Graded Sand with Silt	-	-	NP	NP	A-2-4(0)	SP-SM	_
13	Multicolor Sandy Lean Clay	-	_	31	12	A-6(4)	CL	
14	Tan & Beige Well-Graded Sand with Silt	-	-	NP	NP	A-2-4(0)	SW-SM	-
15	Tan Poorly Graded Sand	-	-	NP	NP	A-1-b(0)	SP	-
16	Brown Lean Clay	-	_	34	13	A-6(12)	CL	-
17	Orange Lean Clay with Sand	_	-	45	23	A-7-6(16)	CL	-
18	Light Gray & Reddish Orange Silty, Clayey Sand	_	-	26	6	A-4(0)	SC-SM	
19	Light Gray Silt with Sand			37	4	A-4(4)	ML	-
20	Light Gray Lean Clay with Sand		-	24	10	A-4(6)	CL	_
21	White & Yellowish Orange Poorly Graded Sand with Silt			NP	NP	A-2-4-(0)	SP-SM	-
22	Brown Silty Clay	-	-	24	5	A-4(3)	CL-ML	
23	Light Gray Lean Clay with Sand	_		41	23	A-7-6(17)	CL	-
24	White & Gray Sandy Lean Clay	-		28	12	A + 6(1)	CL	-
25	Gray Lean Clay with Sand	-		41	18	A-7-6(15)	CL	
25	White, Gray & Reddish Orange Sandy Silty Clay			21	6	A-4(1)	CL-ML	
27	Beige & Yellowish Orange Sandy Lean Clay	-	-	36	16	A-6(7)	CL	
28	Beige & Yellowish Orange Lean Clay with Sand	-	-	43	24	A-7-6(18)	CL	-
29	Brown Lean Clay with Sand	-		38	17	A + 0(13)	CL	-
30	Gray Sandy Lean Clay	_	-	30	14	A-6(5)	CL	-
31	Beige & Tan Lean Clay with Sand	_		36	17	A-6(11)	CL	_
32	Dark Gray Silty Sand	_		NP	NP	A-4(0)	SM	-
33	Gray Lean Clay with Sand		-	41	19	A-7-6(14)	CL	-
		_		1	19	A-(-0(14)	UL	-
					ļ			
				-	<u> </u>	<u> </u>		
	· · · · · · · · · · · · · · · · · · ·							<u> </u>
						<u> </u>		
					ļ			

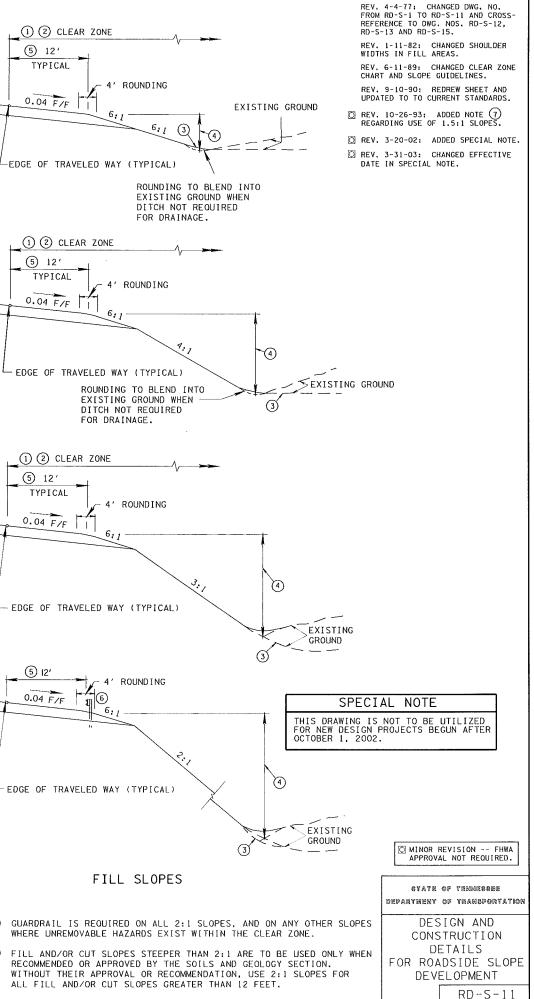
TENNESSEE D.O.T. DESIGN DIVISION

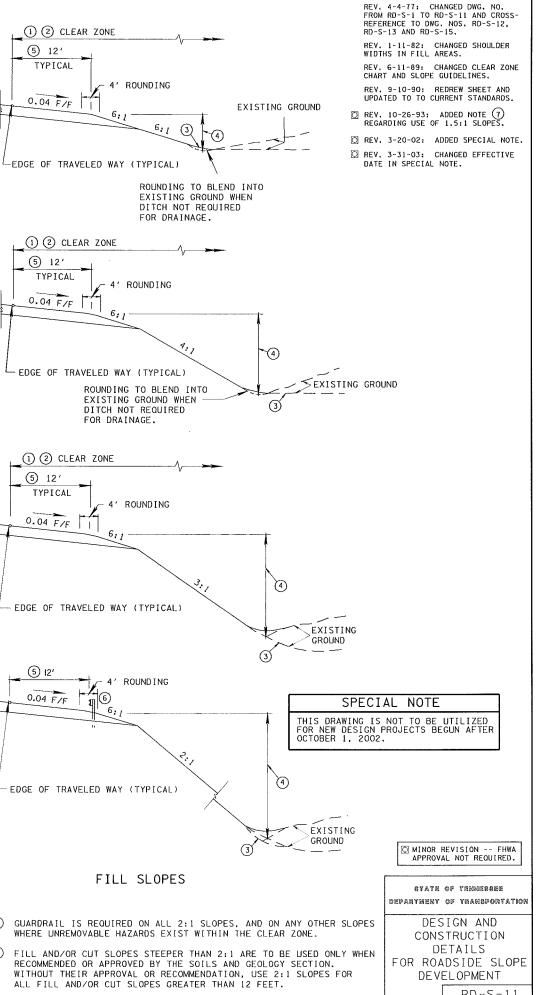
FILE NO.

BBRICENNET OF TELTY HENRIGST V TELEVER THERICLES I FUNNIS OF TELEVER

SHEET NO.


PROJECT NO.


38001-1684-04

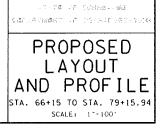

TYPE

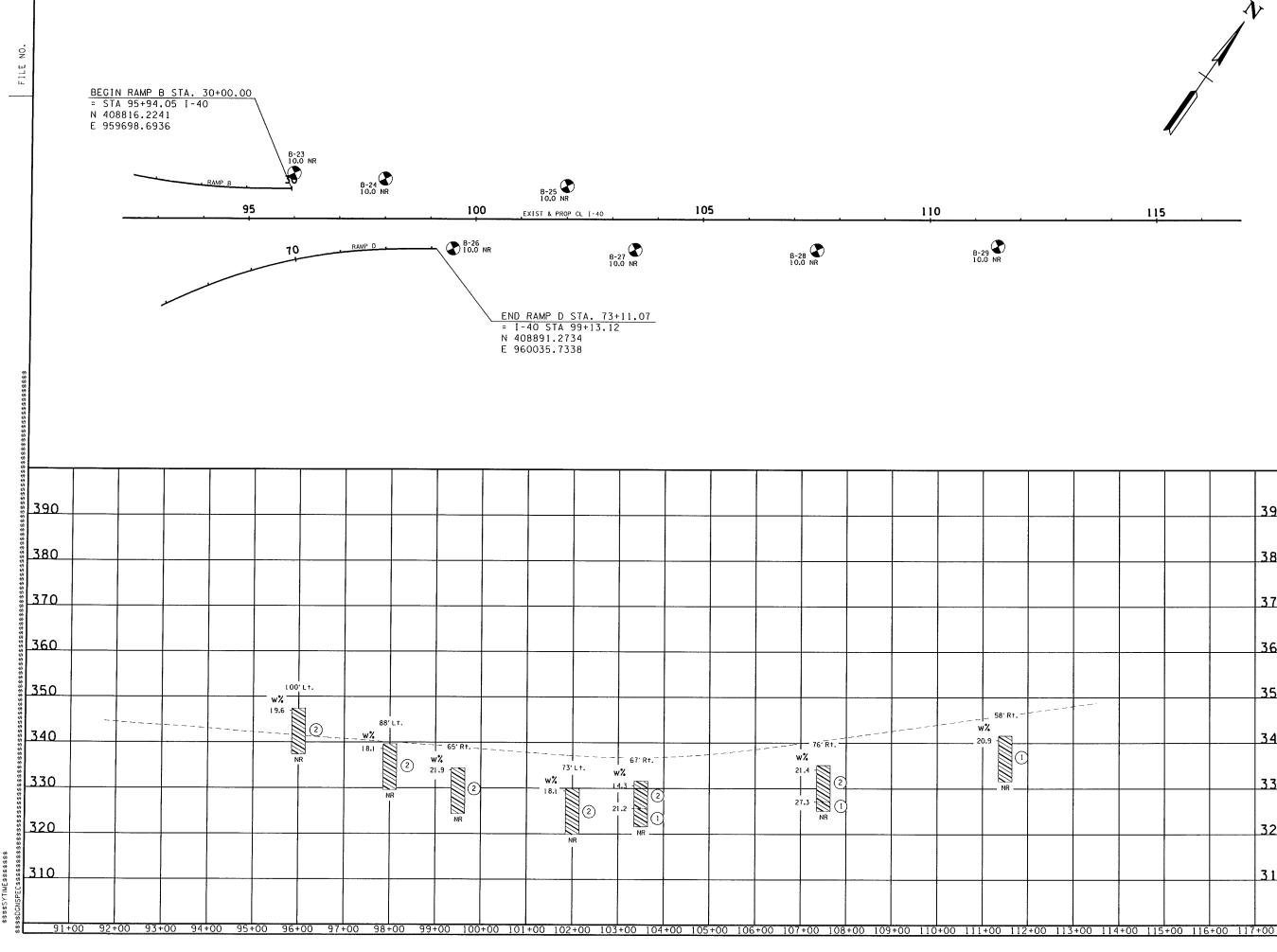
CONST.

YEAR

- 6
- $\overline{\mathbf{1}}$

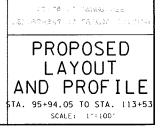
NO. FILE END RAMP A STA. 29+32.90 = STA 79+15.94 [-40 N 407853.0187 E 958324.5469 B-22 30.0 NR B-21 1 7.0 NR B-19 8.0 NR 70 B-20 10.0 NR RAMP A 65 75 80 EXIST & PROP CL I-40 40 8-30 🔊 10.0 NR 8-31 10.0 NR RAMP C B-32 45 BEGIN RAMP C STA. 40+00.00 = I-40 STA 75+96.88 N 407561.7891 E 958139.0391 390 380 370 - BORING PLOTTED -20' ABOVE DATUM NR 110' Rt. 141'Lt. 360 9.9 9.9 128'L†. w% 350 - 10.1 -11.2 - --- --_ _ _ _ \bigcirc 2-5.0 340 11.8 65' Rt. w% 2 $\overline{(}$ 15.1 70' Rt. NR 75'Lt. 4 w% 330 3.8 .__w%_ 19.2 0-NB 4 NR 320 § 310 \$<u></u> 59+00 60+00 61+00 62+00 63+00 64+00 65+00 66+00 67+00 68+00 69+00 70+00 71+00 72+00 73+00 74+00 75+00 76+00 77+00 78+00 79+00 80+00 81+00 82+00 83+00 84+00 85+00

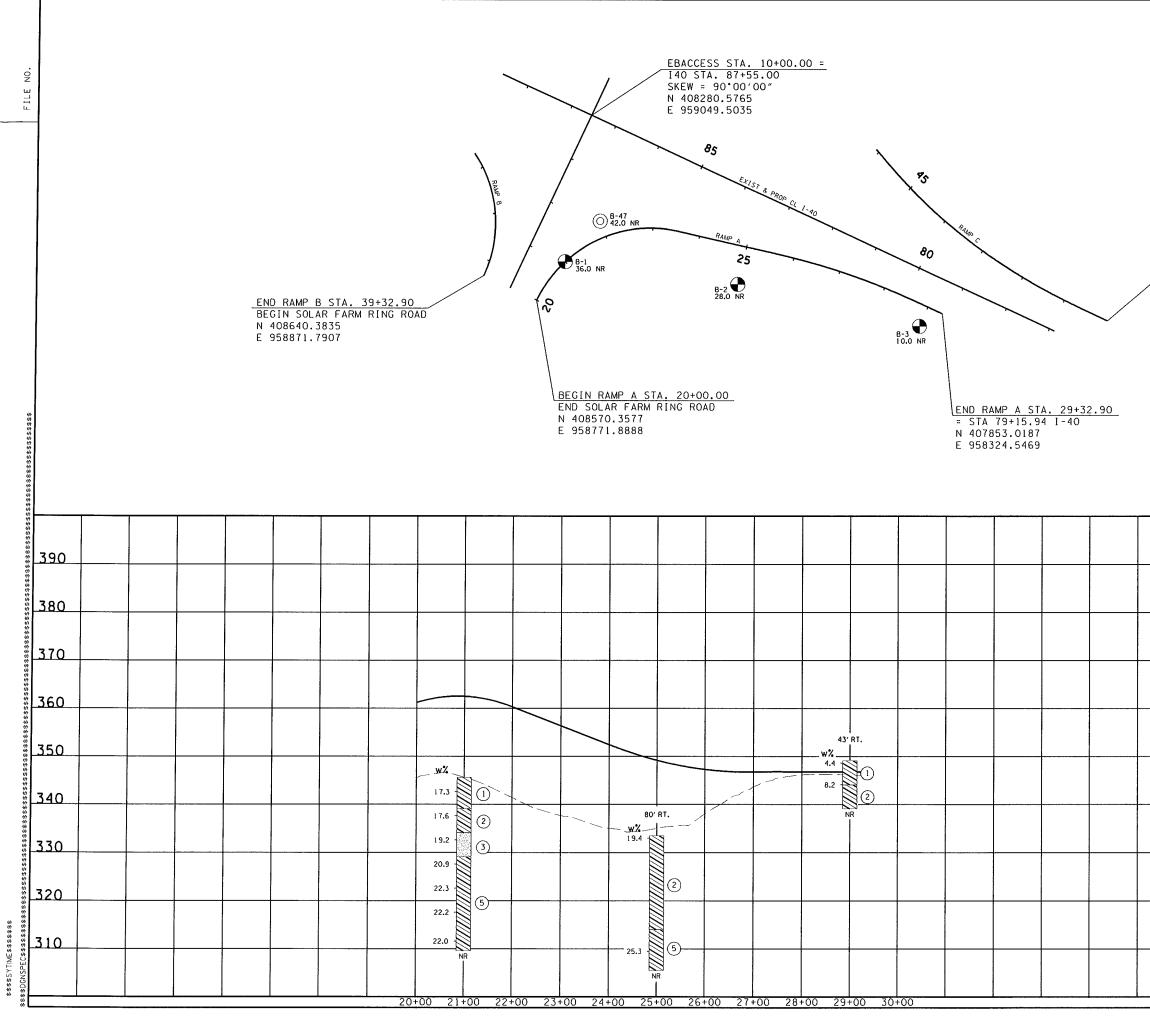

VE\$\$\$\$\$\$\$

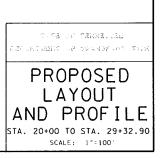

\$\$\$\$SY

Ņ
4

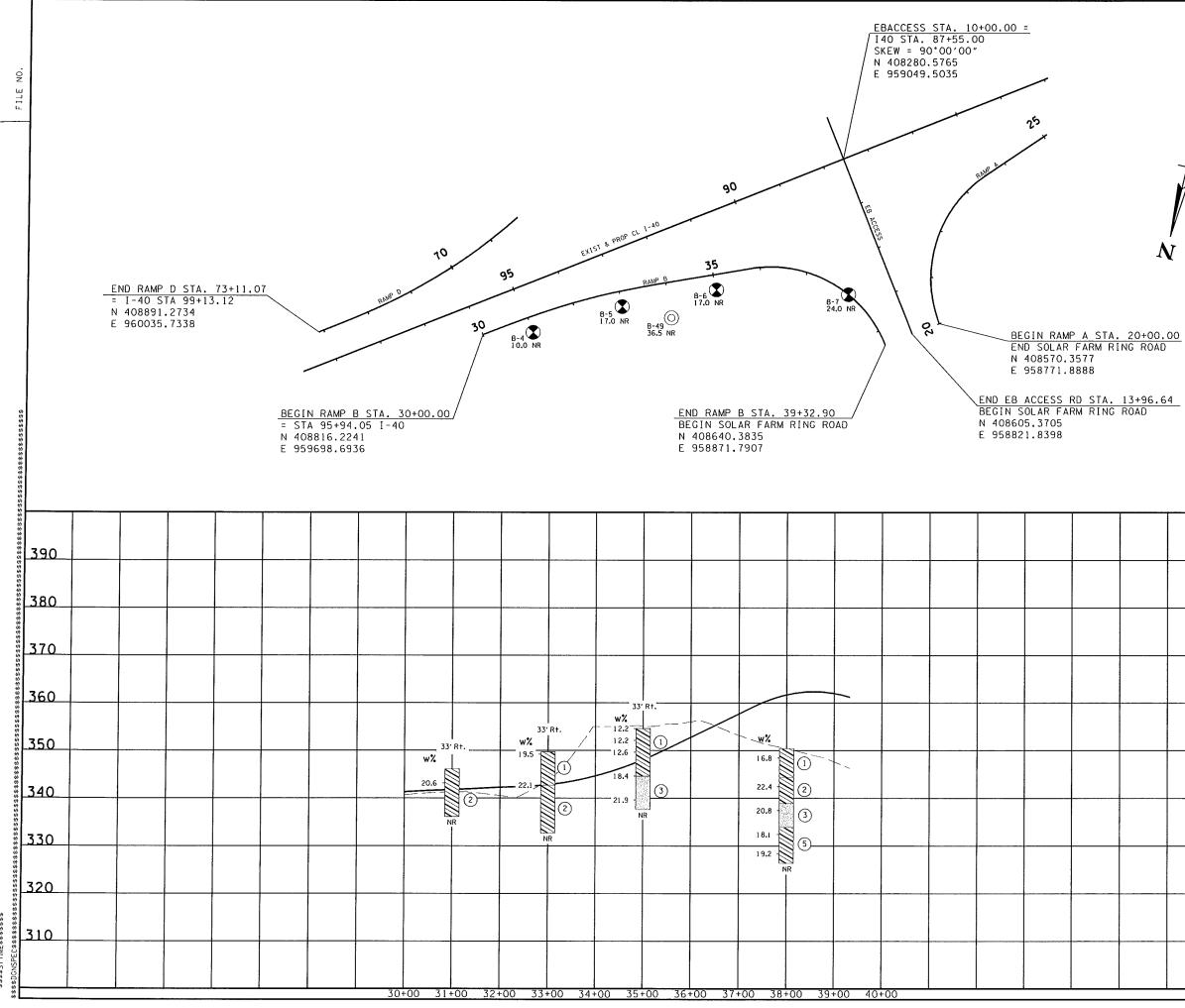
TYPE	YEAR	PROJECT NO.	SHEET NO.
	TYPE	TYPE YEAR	TYPE YEAR PROJECT NO.


	1			390
				380
				370
				360
				350
				340
				330
				320
				310
02	+00 934	00 04	LOO 85	-00




	TYPE	YEAR	PROJECT NO.	SHEET NO.
A				
4				
×				

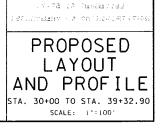
				390
				380
				370
				360
				350
				740
		<u></u>		340
				330
				320
				310
114	+00 115	+00 116	+00 117	+00

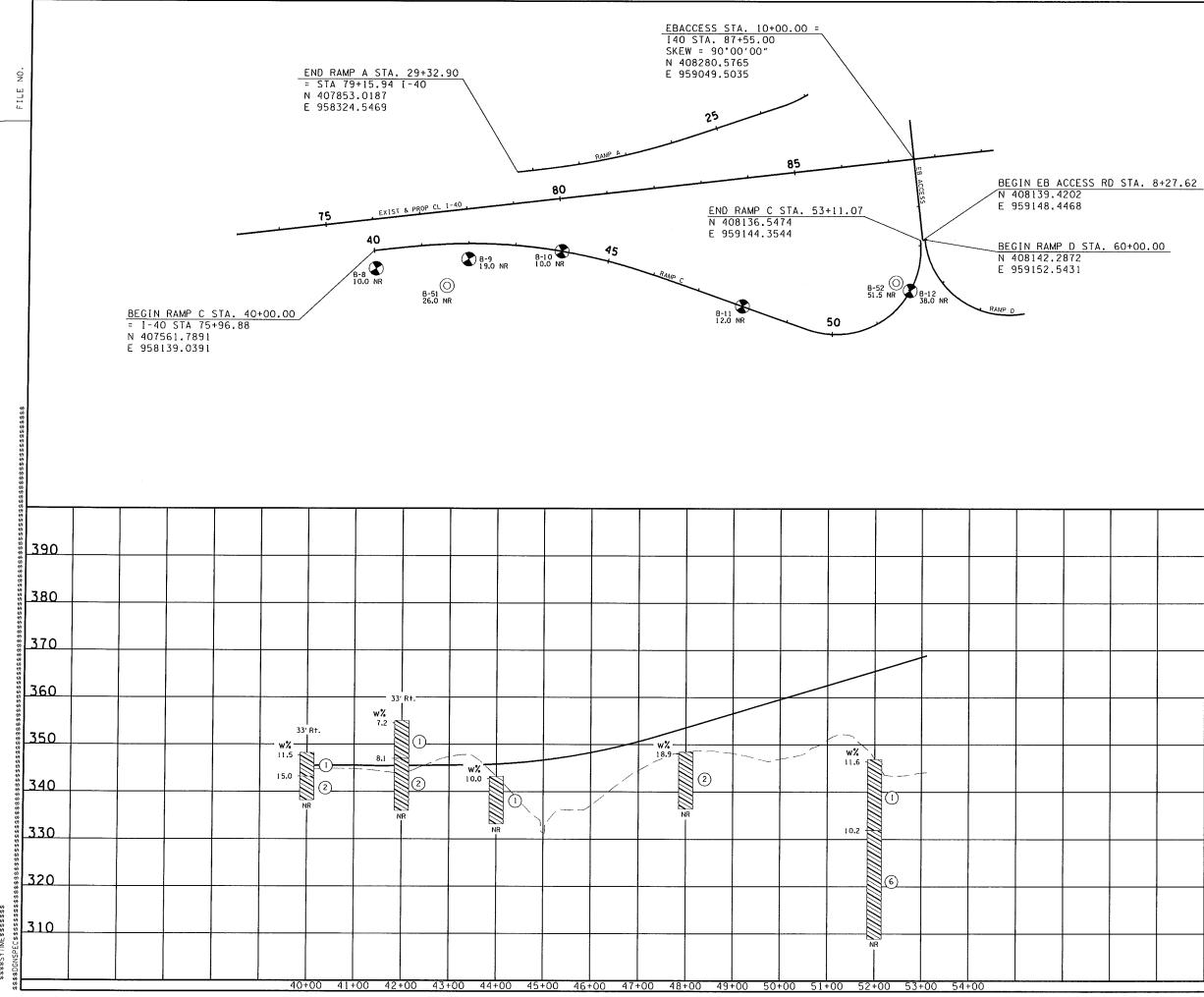


		390
		380
		370
	 	360
 		350
 		340
		330
		320
		310
		310

BEGIN RAMP C STA. 40+00.00 = I-40 STA 75+96.88 N 407561.7891 E 958139.0391

TYPE	YEAR	PROJECT NO.	SHEET NO.

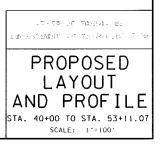


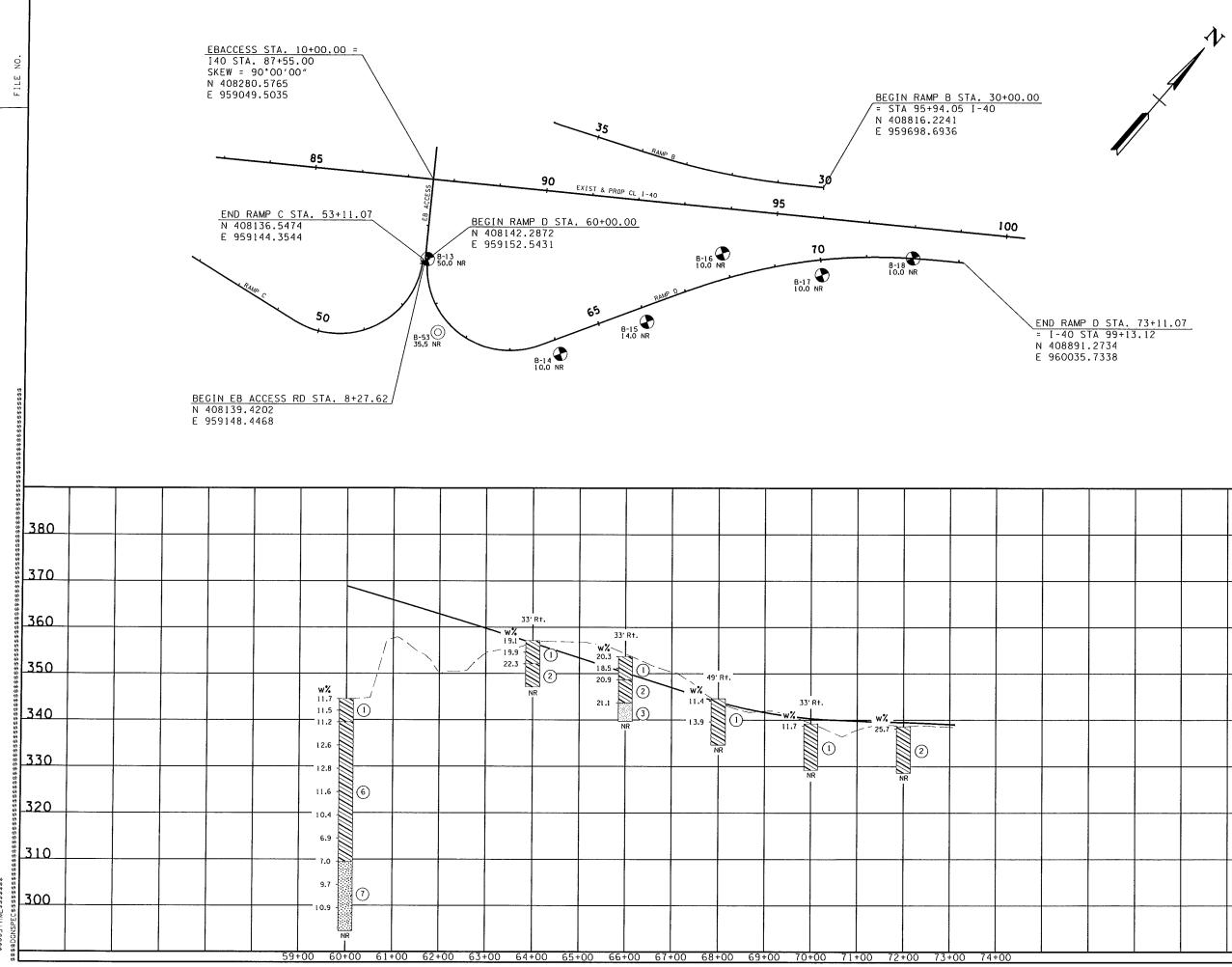

\$\$\$\$\$YTIME\$\$\$\$

TYPE	YEAR	PROJECT NO.	SHEET NO.
			+

N

		390	
		380	
		370	
	:	360	
		350	
		340	
		330	
		320	
		310	




\$\$\$\$\$\$YTIME\$\$\$\$\$\$

TYPE	YEAR	PROJECT NO.	SHEET NO.

 	 	390
		380
 	 	-000
		370
		360
		350
		340
	 	330
		320
		310

ME\$\$\$3 \$\$\$\$S

TYPE	YEAR	PROJECT NO.	SHEET NO.

		380	
		370	
		360	
		350	
 		340	
		330	
		320	
	 	310	1・1日、1日、7回会の過ごの運転 1月11日、新聞研究の同一、新聞作業がはまで低がよがしい。
		300	PROPOSED LAYOUT AND PROFILE
			STA. 60+00 TO STA. 73+11.07 SCALE: 1"=100'

101110 ŝ レトシュ

NO.

FILE

350	8-61	8-62	w% - N	w% N	350
	₩% N 22.7 (5) ¹ / ₈	24,3	$\begin{bmatrix} 20.8 \\ 19.8 \\ 19.8 \\ 12 \end{bmatrix} A-6(12), CL (16)$	20.6 20.2 15 A-6(12), CL (16)	
340	21.4 10 A-6(12), CL (16)	A-6(12), CL (16)		11.7 9, A-6(7), CL (27)	340
	19.9	19.5	13.9	23.6	
330	28.5 14 A-6(7), CL (27)	20.6 10, A-7-6(17), CL (23	19.4 20 A-6(7), CL (27)	24.8 7 A-6(11), CL (3)	330
		26.4	19.7	241 - 18 A-7-6(18) CL (28)	
320		24.2 10 A-6(7), CL 27	23.4 Uu 5,550	23.8 16	320
	29.7 9, A-6(13), CL (29	28.2 Uu 3,065	25.8	26.8	MC-
310	- 29.1	27.5 - 13, A-7-6(18), CL (28)	26.7 - 0u = 3,120 A-6(13), CL (29)	23.7 31	310 B-39 15.0 NR
	27.7	26.3 -113, A-6(13), CL (29)	26.8	251 -23 A-6(5) (1 30)	
300	27.3 14 A-6(5), CL (30)	23.7 23	29,0 4,030	24.6 27	300
	25.4	24.7 31 $A-6(5), CL (30)$	23.8 25 $A-6(5), CL$ 30	251 - 30	
290	26.7	25.2 - 35	24.1 60	26.6 - 26	
	25.8 -21)	25.3 - 22) NR	23.5 - 36) NR		
280					
350	8-65 w%N	B-66	B-67	B-68	350
	26.3	+ w% → N → → → → → → → → → → → → → → → → →	w% N 19.8 12	w% N	6-34
340	25.3 A-6(12), CL (16)	23.9 B A-6(12), CL (16)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		340
	19.3	18.5	17.2 11		
330	24.9 -6, A-6(7), CL 27	22.7 4 A-6(11), CL (31)	19.9	20.8 10 A-6(7), CL 27	330
	30.0	25.1 0u = 2,780 A-6(7), CL	22.4 7 A-6(7), CL (27)	24.4	
320	26.2 10 A-6(11), CL (3)	23.2 - 16	23.4 - 7	26.0	320
	26.9	22.822	24.39	25.6	
310	24.0 A-4(0), SM (32) UU = 7,006	23.8 24		21.4 - 14	310
	23.2	24.6 - 19 A-4(0), SM (32)	26.526	24.3 - 15	
300	26.3	23.2 -24	25.1 30 A - 4(0), SM (32)	24.6 - 15	300
	$+$ 26.7 $ 31 \rangle A-6(5), CL (30)$	23.9 35	25.9 17	24.3 - 19 A-4(0), SM (32)	
290	22.2 36	22.2 34	25.9 19	24.9 - 26	290
	26.6 NR 31	24.3 - 21	25.623	24.2 -26	
280		NR	NR		BORING ELEVATION GOOGLE EARTH SATI
350		B-35	w%		
	w%	8-36 W%	B-38 18.7		8-43
340	8-33 w% w% 6-34 20.3				
				B-40 B-41	8-42 17.6
330	17.9	5 3 16.2		10.6 w% w% w%	8-42 17.6 (2) 21.6 ·
	20.6 (2) 20.6 (3) 20.6 (1) 20.6 (2) 20.6 (2) 20.		17.7 (3) NR		
320				19.2 2 19.6 2 19.6 2 20.8	
				NR 20.7 3 23.2	3 NR
310				NR	

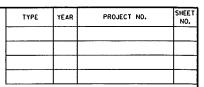
B-38

VATIONS WERE ESTIMATED TH SATELLITE IMAGERY

B-44

2

(3)


B-45

L...

14.9 -

\$\$\$\$DGNSPEC\$

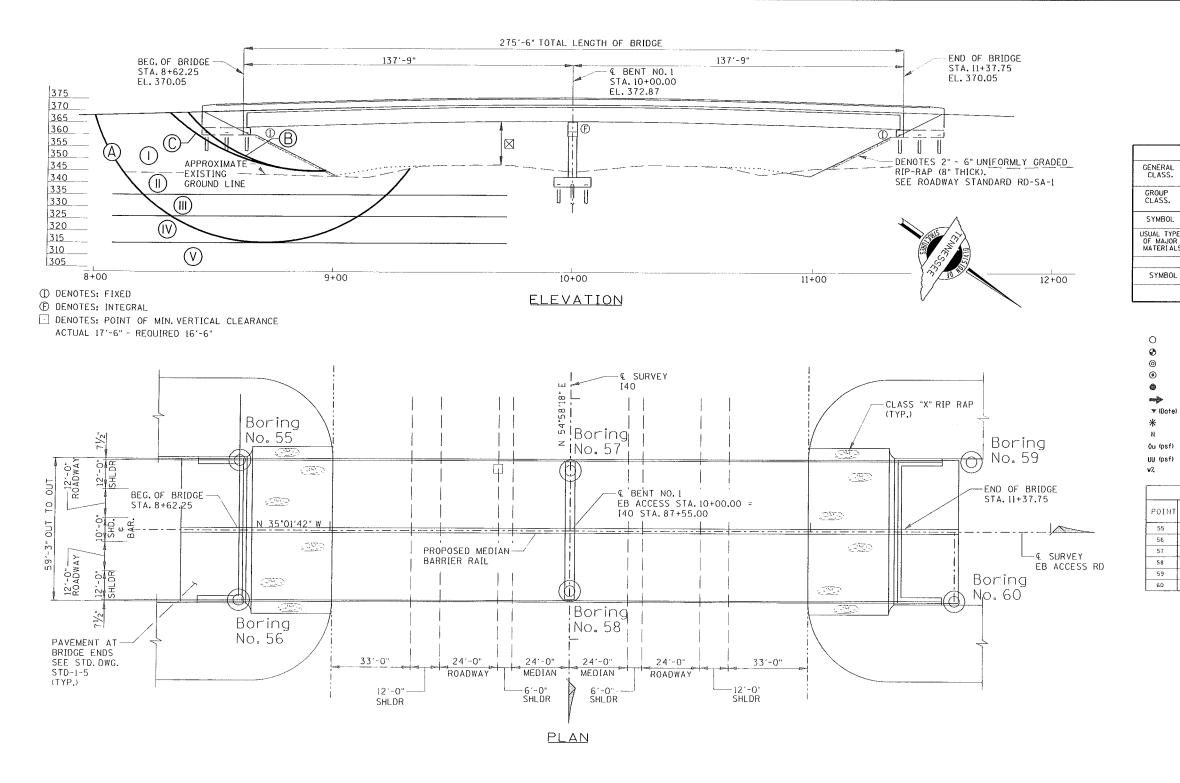
		B-41 15,0 NR B-42
NR.	8-43 15.0, NR	9-42 15.0 NR
1AA A		
28-36 15.0 NR	$\sim X$	8-744 NR 15:0 NR
	$P \rightarrow $	TRACK N
	B-64 61.5 NR B-65	45 5.0 NB
B-67 B-66 61.3 NR 61.2 NR	61.2 NR	5.0 MB
	XXX	
	8:46 N	
	L.	R.
ED FROM		
B-46		
	350	
	340	
(19.4 - 3) (19.4 - 3)		
	330	ಲ್ ೧೯೭೮ ಕೇಂದ್ರ ಕಟ್ಟೇಕ್ ೧೫೩ ಕರ್ಷದ ನಿರ್ದೇಶಕರ್ ೧೫ ನಿರ್ದೇಶಕರ್ ನಿರ್ದೇಶಕರ
	320	PROPOSED
		AND PROFILE
	310	WELCOME CENTER AND PARKING SCALE: 1"=100"

, OT

s.

		TYPE YEAR PROJECT NO. SHEET NO. CONST. 2010 38001-1684-04 -
LE NO.	370	370
	360	360
	350	350
	340 8' MIN. 4:1 330 330 15' MIN.	340
6) 69 69	SLOPE STABILITY ANALYSIS NOT REQUIRED DUE TO SLOPE CONFIGURATION	330
5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
55555555555555555555555555555555555555	26+00	
6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Image: State of the state o	
555 555 555 555 555 555 555 555 555 55	370	370
5555 5555 555 555 555 555 555 555 555	360	360
55555555555555555555555555555555555555		350
\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	340	340
64 64 64 65 65 65 65 65 65 65 65 65 65	A 24.1 A-6(6), C ASSUMED SOIL STRENGTH PARAMETERS FACTORS OF 26.1 301L II III III Short Term A	4.0
\$\$\$\$DGNSPEC\$\$\$\$\$\$ 1 ME\$\$\$\$\$\$\$ \$\$\$\$DGNSPEC\$\$\$\$\$\$\$\$\$\$\$\$\$	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	Image:	
Sure & Duits		0 140

370																	
360											A-10					B-5	 51 +
350														B		w%	N
											6:1		3:1		A		-26 A-6
340																- 15.2-	-20 \A-
	ACC11		RENGTH PARA				TORS OF SAF									12.7- 9.8-	A-2-4
	SOIL					Short Term	A A	2.2									
	Short Term	c=240 PSF φ=28* %=128 PCF	c= 50 PSF φ=32* %=125 PCF	c= 0 PSF φ=32° %=118 PCF		Long Term Seismic	B	1.7 0.7									
	Long Term	c=60 PSF φ=28° %=128 PCF	ē=0 PSF φ=32° %=125 PCF	c̄=0 PSF φ̄=32° 𝔅=118 PCF					41.5	0							
								(STA.	41+5 (Ramp 40+00 TO	C) STA. 44+00)						
											, 						
770																	
370															B-49		
360															v%N	}	
350													B>		.9 23 .6 17 .3 15	A-6(10)	, CL (2
						8;	1 6:1						2:1	A 21		}	
340											6:1			20	.6-1-14	A-7-6(1)	7). CL
330										L-C)			25 26			
			RENGTH PARA		Short	FACTORS OF	1	_						25	.5-27.) , A-6(8),	CL (10
		ort $\overline{\overline{\Phi}}=24$	3* <u>6</u> =3	11 400 PSF	Long T	erm B	2.6										
	Lo	ng c=60	30 PCF 8=1	34 PCF	Selsm		0.8	_									
	le	rm 8=13	30 PCF 3=1	30° 34 PCF					34+0((Ramp E								
								(STA. 30	0+00 TO ST	A. 39+32.89)						
140																	
- 140	- 120	- 100		80	-60	- 10		20	Ŷ		20	40		60	80) C	l .


							TYPE	YEAR	PROJECT NO.	SHEE
							CONST.	2010	38001-1684-0	
								1		
										370
			B-5							
	C-		w%	N						360
	B			26 A-6(1		2)				350
_		A		29					-	
\leq					4(0), SM	 				340
			12.7-							
			9.8-	A-2-4(0), SP-SM	(12)				
										370
		B-49								
		W% N								360
\rightarrow	16	.9 23	A-6(10)	, CL 😢				-		750
		.3-1-15)							350
	AD I	.6-14								340
		.6-1-13	A-7-6(1	7), CL (9						
	26	.9-1-24								330
	25	.5-27	, A-6(8),	CL (10)						
6	0	8	0	1.4	00	1	20		140	
Ø	•	8	0	14	0	1		-		

370			FA Short Ter Long Terr		3.2 2.8														
			Seismic	c	1.1					C .1				6:1					
<u>360</u> 350							4:			6:1	0			15'	B-	-53	3:1		
340											<u>+</u>		8 MIN.	A	***	N 12 21 A-61	10), CL (2)-		
			ASSUMED	SOIL STRENGTH	PARAMET	ERS				n					14.0-	-49			
330		SOIL Short Term	1 c=1200 PSF φ=0*	II c= 1000 PSF \$\$\phi\$=0*	φ=0*	Φ=	IV = 0 PSF =34*								14.2-	-35			
		Long Term	8=120 PCF c=240 PSF φ=30* 8=120 PCF	3=129 PCF c̄=200 PSF φ̄=28* 3=129 Y=129 PCF	γ=128 P(c̄=600 P φ=34* γ=128 γ=128 P(SF c= =	122 PCF 50 PSF 34* 122 PCF								8.8	-41 A-6()	6), CL (8)		
												₩ 61	+50		6.2	A-2	4(0), SM (7)		
											(STA.	(Ra 60+00 T(3+11.07)]				
															-				
370																			
360	7/10/2520/17 10/2									6:1	F	T		6:1		4:1			
350	3' UNDERCUT AND MATERIAL IN ACCC FROM STA. 49+00	ORDANCE WITH	I TDOT SPECIFI	ANULAR		3:1				B	Ő		A 12		MIN.			·	
340					S. P. J. B. C. S.				B-52 N	0.00		w%	15' MIN.		MIN.				
330			1:1					10.1 18.2		1 1	, cl ()	10.2							
								14.5	14								ASSU	MED SC	DIL STRE
								1	14	}A-6(6),	CL (8)		A-6(7)	. CL		SOIL Short	c=1200	PSF	ll c= 100
								1	12							Long Term	φ=0° %=120 c=240 φ=30°	PSF	Φ=0* % =120 c=200 φ=28*
								1		A-2-4(0). SM (7						v=120	PCF	δ=120
								26.0	- 15 - 15		STA. 4	52.	+00 np C) STA. 53					1	
	- 140	- 120	- 100	- {	30	-60		-40	ואה	- 2	0	(D	2	0	40		60	

						TYPE	YEAR	PROJECT NO.		SHEET NO.
						CONST.	2010	38001 -1 684-	04	
									37	70
										<u> </u>
									36	60
									70	- 0
	-								5:	50
									34	40
									3.	30
				:						
									37	70
	F	ACTOR	S OF S	AFET	Y					
	Short Te		Α	T						
	Long Ter		B		2.4				36	50
	Seismic		<u>с</u>							
	Sersing				1.1				39	-
									:	50
									34	40
				T						
									5	30
GTH	PARAME	IERS								
			1							
PSF	c= 140 	0 PSF	c= 0 φ=34°							
F	V=121		V=1 22	PCF						
F	ਟੋ=280 ਰੋ=30°		ਟੋ=50 ਰ =34°							
F	v=121	PCF	v=122	PCF						
8	0		100		1:	20		140		

Appendix VII Foundation Data Sheets

	ASS	SUMED SOIL ST	RENGTH PAR	AMETERS	
SOIL	I	ł	11	IV	V
Short Term	c=1200 PSF φ=0° %=120 PCF	c=1500 PSF	c=1000 PSF φ=0° %=125 PCF	c=50 PSF	c=0 PSF φ=32° %=118 PCF
Long Term	c=240 PSF ∳=30° ४=120 PCF	ੋ = 300 PSF	ੋ =200 PSF ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	C=130 PSF 0 = 28° 3 = 125 PCF	c̄=50 PSF φ̄=32* %=118

FACTORS OF SAFETY							
Short Term	A	2.0					
Long Term	в	2.3					
Seismic	С	1.1					

BENCHMARKS:

CP-6 N 408420.9593, E 959372.2868, EL STATION 90+99.89, OFFSET 70.32'(RT) 12" GALV. SPIKE SET IN SOUTH EDGE OF I-40 EASTBOUND SHOULDER.

CP-15 N 408616.9988, E 959407.8016, EL STATION 92+41.50, OFFSET 69.83'(LT) 60D NAIL SET IN NORTH EDGE OF I-40 WESTBOUND SHOOULDER.

CP-30 N 408658.5738.E 959344.3446.EL STATION 92+13.40.OFFSET 140.30'(LT) 1/2 "REBAR SET 20.0'NORTH OF THE NORTHEAST BRIDGE ABUTMENT.

CP-31 N 408261.2535,E 959305.4804,EL STATION 89+53.52,OFFSET 162.75'(RT) 1/2 "REBAR SET 55.4'SOUTH OF THE SOUTHEAST BRIDGE ABUTMENT.

Ο ΒΥ	DATE
37	DATE
SED BY	DATE
B7	DATE

						СС	ONST.1	40. XX)	(XX-X)	XXX-XX				
											SHEET	NO.		
						380	01-168	34-04	20	10				
									REV	ISIONS				
						10.	DATE	BY		BRIEF D	ESCRIPTIO	Ň		
												-		
CO.14			~ ~		110		01.4	COL	- 1 0 1	TION				
					AAS					TION				
				S						ORGANIC MATERIALS				
							-			l				
	A-3		· · · · ·	-	······	A-4	A-5	A-6		A-1,A-2	A-4,A-5 A-6,A-7			
	mmm	A-2-4	A-2-5	A-2-6	A-2-7		-		1-1-5					
				88	1999	111				3				
STONE FRAGS. GRAVEL & SAND	FINE SAND									OR MODER	OF	HI GHL Y ORGANI C SOILS		
			ADC	10 I T I O	NAL RO	CK SYI	MBOLS			Toutovitte				
		1212	1.1.1.1		122									
cuu c	1. 5. 1		1		WEAT	NERED	EXIST	NG	RANDOM	WEATH	RED GRA			
SHALE	LIMES	STORE	UULU	MULE	SHA	ALE	ROADWAY	FILL.	BACKFILL	LIMES	TONE	ROCK		
-hiller Coundler	c					800	Poo	k Quality	Destant	tion				
Rockline Soundings						1100	100	n uuunny	Designo					
sturbed Sample						REC			•	mon				
	CR (S A-1 A-1-0 A-	GRANULA (<35% PA	CRANULAR MA (≤35% PASSING A-1 A-3 A-1-0 A-2-4 STONE FRACS. FINE GRAVEL & SAND SAND FINE SHALE LIMESTONE	GRANULAR MATERIAL (≤35% PASSING *200) A-1 A-3 A-1-q A-1-b A-2-4 A-1-q A-1-b A-2-4 STORE FRACS. FINE GRAVEL & SAND SAND SILTY OF GRAVEL & SILTY OF GRAVEL & SAND SHALE LIMESTONE	GRANULAR MATERIALS (≤35% PASSING *200) A-1 A-3 A-1 A-3 A-1 A-3 A-1 A-3 A-1-0 A-2-4 A-2-5 A-2-5 STOME FRAGS. FINE GRAVEL & SAND SAND ADDI TI OI SHALE LIMESTONE DOLOMI TE	GRANULAR MATERIALS (<35% PASSING *200)	SOIL LEGEND AND AASHTO GRANULAR MATERIALS SIDI A-3 A-1 A-3 A-2 A-4 A-1-0 A-2-4 A-2-5 A-2-6 A-2-7 A-1 A-3 A-2 A-4 A-1 A-3 A-2 A-4 A-1 A-3 A-2 A-4 A-1 A-1 A-2 A-4 A-1 A-2 A-4 A-1 A-2 A-4 A-2 A-4 A-2	SOIL LEGEND AND AASHTO CLA BOIL LEGEND AND AASHTO CLA GRANULAR MATERIALS CISST PASSING *200) A-1 A-3 A-1 A-3 A-1 A-3 A-1 A-3 A-2 A-4 A-1 A-3 A-1 A-2 A-1 A-3 A-2 A-4 A-5 A-2 A-1 A-2 A-2 A-4 A-5 A-2 A-1 A-5 A-1 A-2 A-2 A-4 A-5 A-2 A-1 A-2 A-1 A-2 A-1 A-3 A-2 A-4 A-5 A-1 A-2 A-4 A-5 A-1 A-2 A-2 A-4 A-5 A-4 A-5 A-4 A-5 A-4 A-5 A-4 A-5 A-4 A-5 A-5	SOIL LEGEND AND AASHTO CLASSIF GRANULAR MATERIALS (335% PASSING *200) A-1 A-3 A-2 A-1 A-3 A-2 A-1 A-3 A-2 A-1 A-3 A-2 A-4 A-5 A-6 A-1-0 A-2-4 A-5 A-6 A-1-1 A-3 A-2 A-4 A-5 A-6 A-1 A-1 A-3 A-2 A-4 A-5 A-6 A-1 A-1 A-2 A-4 A-5 A-6 A-1 A-2 A-4 A-5 A-6 A-1 A-7 A-8 A-9 ADDITIONAL ROCK SYMBOLS	PROJECT NO. YEA 38001 - 1 684-04 20 REV NO. DATE BY IO. DATE BY IO. IO. SOIL LEGEND AND AASHTO CLASSIFICA GRANULAR MATERIALS SILT-CLAY MATERIALS (S35% PASSING *200) IO. 35% PASSING *200) A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1 -0 A-2-4 A-2 A-4 A-5 A-6 A-7 STOR FRAGS, GRAVEL & SAND SILTY OR CLAYEY SILTY CLAYEY SOILS SOILS STOR FRAGS, GRAVEL & SAND SILTY OR CLAYEY SOILS SOILS SOILS SIDITIONAL ROCK SYMBOLS ADDITIONAL ROCK SYMBOLS ADDITIONAL ROCK SYMBOLS BACKTILL SHALE LIMESTONE DOLOMITE REARPEED REASTING RANDOM	38001 -1 684-04 2010 REVISIONS NO. DATE BY BRIEF DI BY BRIEF DI SOIL LEGEND AND AASHTO CLASSIFICATION GRANULAR MATERIALS (SARNULAR MATERIALS <td>PROJECT NO. YEAR SHEET 38001 -1 684-04 2010 REVISIONS NO. DATE BY BRIEF DESCRIPTION SOIL LEGEND AND AASHTO CLASSIFICATION CRANULAR MATERIALS (S35% PASSING *200) A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 STOR FRACE, GRAVEL & SAND SAND SULTY OR CLAYEY SULTY SULS WITH LITTLE OR MODERATE AMOUNTS OF ORGANIC MATTER SULS WITH LITTLE OR GADERATE AMOUNTS OF ORGANIC MATTER ADDITIONAL ROCK SYMBOLS A-6, A-7 SHALE LIMESTONE DOLOMITE MEATHERD RAMOTAL REATHERD RAMOTAL RAMOTAL REATHERD</td>	PROJECT NO. YEAR SHEET 38001 -1 684-04 2010 REVISIONS NO. DATE BY BRIEF DESCRIPTION SOIL LEGEND AND AASHTO CLASSIFICATION CRANULAR MATERIALS (S35% PASSING *200) A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 STOR FRACE, GRAVEL & SAND SAND SULTY OR CLAYEY SULTY SULS WITH LITTLE OR MODERATE AMOUNTS OF ORGANIC MATTER SULS WITH LITTLE OR GADERATE AMOUNTS OF ORGANIC MATTER ADDITIONAL ROCK SYMBOLS A-6, A-7 SHALE LIMESTONE DOLOMITE MEATHERD RAMOTAL REATHERD RAMOTAL RAMOTAL REATHERD		

	Undisturbed Sample Boring	ø	Angle of InternalFriction (TotalStress)
	Undisturbed Sample Boring & Rock Core	ø	Angle of InternalFriction (Effective Stress)
	Rock Core	c (psf)	Cohesion (TotalStress)
	Approximate Footing Elevation	c (psf)	Cohesion (Effective Stress)
} }	Water Elevation	お (pcf)	TotalUnit Weight
	Liquifaction is Probable at These Locations	R	Refusal
	Penetration Resistance	NR	RefusalNot Encountered
	Unconfined Compressive Strength	(HA)	Hand Auger
	Unconsolidated Undrained TriaxialStrength	Fs	Nominal Side Friction Value for Interval (tsf)
	Moisture Content	0b	Nominal End Bearing for Layer (tsf)

		-	TABLE OF PO	INT LOCATIO	NS	
т	STATION	OFFSET	ы	E	GROUND ELEV.	REFUSAL ELEV
1	8+62	29' L†.	408151.8110	959106.5131	342.4	NZA
	8+62	29′R†	408185.4064	959154.4415	345.4	NZA.
	10+00	25' Lt.	408267.0435	959030.9500	344.9	11ZA
	10+00	25′ Rt.	408295.7426	959071.8933	345.1	11∕A
	11+67	29' Lt.	408401.4987	958931.8191	346.8	11/A
	11+60	29' R†.	408429.0574	958983.3314	34E.4	11/A

	NOTE: THIS DRAWING IS FOR FOUNDATION DATA ONLY AND IS NOT TO BE USED AS A LAYOUT.
343.18,	STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION
343.34.	FOUNDATION DATA SHEET
363.40,	EB ACCESS ROAD over I-40 br. I.d. no. xxxxxxxxx
364.73,	LOG MILE XXX.XX STA. 87+55.00 HAYWOOD COUNTY 2010
	2010 SH.1 OF 2

		w% N Fs Qb	w% N Fs Ob	w% N Fs Ob	w% N Fs Qt	w% N Fs Qb
	w% N FS ($\begin{array}{cccccccccccccccccccccccccccccccccccc$		19.7 50 0.6 9.	2 19.0 14 0.4 5.	1 19.7 33
	17.0 17		0.3 3.	1 24.2 9	22.5	18.0 18 0.5 6.9
	8.0 26	0.4 3.1	20.3 14 $$	20.5 13 0.4 3.	26.7	
ć	21.2 15 0.5 1	5.8	22.2		26.6 Ou = 3,870 0.4 3.	21.3 5 2 0.4 6.1
1	4.5 Ou = 6,250	17 7 20 0 1 700	9 24.5	5 29.5 11 0.4 4.0	6 24.7 6	25.3 7 26.3 9
1	6.3 17 0.5 13	5.8 0.4 2	UU = 5,118 —	26.7 16	20.3 Uu = 8,506	23.3 $Uu = 5,1860.4 3.2$
ç	.6 100+	,	20.4 13 -0.4 7.9	20.8 Qu = 1,620	26.0 15 0.5 6.1	N
1	1.6	0.4 4.6	「読み知	20,6 14 0.4 3.6		16.4 Qu = 3,320
1	1.1 47	0.4 24.	5	1 19.7 65	17.9 44	19.3 - 29
1	0.6 55 8.9		47	20.6 40	19.8 24	20.5 18 0.5 16.8
2	1.2 30	21.9	19.5	21.6 37	21.3 47 0.5 16.	
2	1.4 30	22.5 33	24.0 35		23.3 20	20.9 46
2	1.2 38	22.0 36	20.7	19.8 35	23.0 17	20.1 4 38
2	3.3 24	34	22.5	22.0	目的語	21.6 36
2	2.4 31 0.6 16	23.7	21.5	22.1 18	5.2 26	
	2.0 21	23.3 18	20.2		21.9 54 0.6 16.	0.6 25.5
2	3.7 13	<u>25.2 12</u> 0.6 16.8	23.8	21.5 19	22.2 23	
· · · · · · · · · · · · · · · · · · ·	. 2	24.7	24.3 28	21.3	21.7 49	21.5
). 4 000 33	21.2000-84	20.2			22.5
	000	-			0.7 37.	5 18.1 800 45 0.7 37.5
	. 4 3000 54 0.7 37	19.9	19.62000 82	23.3	19.0800 84	20.7888660

GENERAL CLASS. GROUP CLASS. SYMBOL USUAL TYPES OF MAJOR MATERIALS SYMBOL

> O Uno ۲ Un ¢ Re -Ao ¥ Liα N Pe Ou (psf) Und UU (psf) Und w% Moi

POINT	ST
55	8
56	В
57	10
58	10
59	L
60	1

B SED 61 BY____

								ONST.	N0.XX	(XXX-)	<xxx-x></xxx-x>		
							PF	ROJECT	NO.	YE	AR	SHEE	T NO.
							380	001-16	84-04	2	01.0		
		REV							VISION	5			
							N0.	DATE	BΥ		BRIEF	DESCRIPTI	011
							L			J			
	<u> </u>							<u>.</u>	<u> </u>				
	SOL	LE	GENI	JA	ND	AAS	HIO	CLA	SSI	· ICA	TION		
	0	RANULA	R MAT	ERIAL	S		SILT-0	CLAY MA	TERIAL	S	ORGAI	NIC MATE	RTALS
	(≤35% PASSING *200)						(> 35%	PASSIN	(G =200)		1		
	(535% PA	301110								1		
	A-1	≤35% PA		A	-2		A-4	A-5	A-6	A-7	A-1,A-2	A-4.A-5	
	A-1 A-1-0 A-1-	A-3		A A-2-5		A-2-7	A-4	A-5	A-6	A-7 A-7-5 A-7-6	A-1,A-2 A-3	A-4,A-5 A-6,A-7	
	A-1	A-3		r		A-2-7	A-4	A-5	A-6				
ES	A-1 A-1-0 A-1-	A-3 FINE	A-2-4	A-2-5	A-2-6	Y	SIL		CLA	A-7-6	A-3	A-6,A-7	HI GHL Y
ES S	A-1 A-1-0 A-1-	A-3	A-2-4	A-2-5	A-2-6	Y	SIL			A-7-6	A-3 SOILS WI	A-6,A-7 TH LITTLE ATE OF	22222
	A-1 A-1-0 A-1-0 A-1- STONE FRAGS. GRAVEL &	A-3 FINE	A-2-4	A-2-5 LTY OF	A-2-6 CLAYE	Y ID NAL RO	SII SOI CK SYN	TY	CLA	A-7-6	A-3 SOILS WI OR MODER AMOUNTS	A-6,A-7 TH LITTLE ATE OF	HI GHLY
	A-1 A-1-0 A-1-0 A-1- STONE FRAGS. GRAVEL &	A-3 FINE	A-2-4	A-2-5 LTY OF	A-2-6 CLAYE	Y ID	SII SOI CK SYN	TY	CLA	A-7-6	A-3 SOILS WI OR MODER AMOUNTS	A-6,A-7 TH LITTLE ATE OF	HI GHLY

0	Rockline Soundings	ROD	Rock Quality Designation
Ø	Disturbed Sample Boring	REC	Core Recovery
0	Undisturbed Sample Boring	ø	Angle of InternalFriction (TotalStress)
۲	Undisturbed Somple Boring & Rock Core	ø	Angle of InternalFriction (Effective Stress)
0	Rock Core	c (psf)	Cohesion (TotalStress)
est)>	Approximate Footing Elevation	c (psf)	Cohesion (Effective Stress)
(Date)	Water Elevation	さ (pcf)	TotolUnit Weight
*	Liquifaction is Probable at These Locations	R	Refusal
N	Penetration Resistance	NR	RefusalNot Encountered
Ou (psf)	Unconfined Compressive Strength	(HA)	Hand Auger
UU (psf)	Unconsolidated Undrained TriaxialStrength	Fs	Side Friction Value for Interval (tsf)
×7.	Moisture Content	Ωb	End Bearing for Layer (tsf)

		ABLE OF PO	INT LOCATIO	NS	
STATION	OFFSET	Ν	E	GROUND ELEV.	REFUSAL ELEV.
8+62	29' L†.	408151.8110	959106.5131	342.4	11/4
8+62	29'R†	408185.4064	959154.4415	345.4	NZA.
10+00	25' Lt.	408267.0435	959030.9500	344.9	NZA.
10+00	25 Rt.	408295.7426	959071.8933	345.1	17A
11+67	29' Lt.	408401.4987	958931.8191	346.8	11/4
11+60	29' Rt.	408429.0574	958983.3314	346.4	11/4

NOTE: THIS DRAWING IS FOR FOUNDATION DATA ONLY AND IS NOT TO BE USED AS A LAYOUT.

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

FOUNDATION DATA SHEET

EB ACCESS ROAD OVER I-40 BR. I.D. NO. XXXXXXXXXX LOG MILE XXX.XX STA. 87+55.00 HAYWOOD COUNTY 2010 SH. 2 OF 2